-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_submission.py
38 lines (33 loc) · 1.32 KB
/
create_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import pandas as pd
import numpy as np
exp_name='exp_9'
sample_subm_path = 'extra_data/odir/XYZ_ODIR.csv'
df_sample = pd.read_csv(sample_subm_path)
df_test_left = pd.DataFrame()
df_test_left['id'] = df_sample.ID
df_test_left['pic_id'] = df_sample.ID.apply(lambda x: str(x)+"_left.jpg")
df_test_left.to_csv('extra_data/odir/test_df_left.csv')
df_test_right = pd.DataFrame()
df_test_right['id'] = df_sample.ID
df_test_right['pic_id'] = df_sample.ID.apply(lambda x: str(x)+"_right.jpg")
df_test_right.to_csv('extra_data/odir/train_df_right.csv')
print('DF were created.')
final_predict_1 = pd.read_csv('final_predict_1.csv',header= None)
final_predict_2 = pd.read_csv('final_predict_2.csv',header= None)
final_predict_3 = pd.read_csv('final_predict_3.csv',header= None)
# import pdb;pdb.set_trace()
final_predict = 0.3*final_predict_1.values+0.3*final_predict_2.values+0.4*final_predict_3.values
df_submit = pd.DataFrame()
df_submit['ID'] = df_test_right.id
df_submit['N'] = final_predict[:,0]
df_submit['D'] = final_predict[:,1]
df_submit['G'] = final_predict[:,2]
df_submit['C'] = final_predict[:,3]
df_submit['A'] = final_predict[:,4]
df_submit['H'] = final_predict[:,5]
df_submit['M'] = final_predict[:,6]
df_submit['O'] = final_predict[:,7]
df_submit.to_csv('Andy_ODIRdr_{}.csv'.format(exp_name),index=False)
'''
This will give 83
'''