forked from kivy-garden/garden.graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
__init__.py
1325 lines (1138 loc) · 49.7 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Graph
======
The :class:`Graph` widget is a widget for displaying plots. It supports
drawing multiple plot with different colors on the Graph. It also supports
axes titles, ticks, labeled ticks, grids and a log or linear representation on
both the x and y axis, independently.
To display a plot. First create a graph which will function as a "canvas" for
the plots. Then create plot objects e.g. MeshLinePlot and add them to the
graph.
To create a graph with x-axis between 0-100, y-axis between -1 to 1, x and y
labels of and X and Y, respectively, x major and minor ticks every 25, 5 units,
respectively, y major ticks every 1 units, full x and y grids and with
a red line plot containing a sin wave on this range::
from kivy.garden.graph import Graph, MeshLinePlot
graph = Graph(xlabel='X', ylabel='Y', x_ticks_minor=5,
x_ticks_major=25, y_ticks_major=1,
y_grid_label=True, x_grid_label=True, padding=5,
x_grid=True, y_grid=True, xmin=-0, xmax=100, ymin=-1, ymax=1)
plot = MeshLinePlot(color=[1, 0, 0, 1])
plot.points = [(x, sin(x / 10.)) for x in range(0, 101)]
graph.add_plot(plot)
The MeshLinePlot plot is a particular plot which draws a set of points using
a mesh object. The points are given as a list of tuples, with each tuple
being a (x, y) coordinate in the graph's units.
You can create different types of plots other than MeshLinePlot by inheriting
from the Plot class and implementing the required functions. The Graph object
provides a "canvas" to which a Plot's instructions are added. The plot object
is responsible for updating these instructions to show within the bounding
box of the graph the proper plot. The Graph notifies the Plot when it needs
to be redrawn due to changes. See the MeshLinePlot class for how it is done.
The current availables plots are:
* `MeshStemPlot`
* `MeshLinePlot`
* `SmoothLinePlot` - require Kivy 1.8.1
.. note::
The graph uses a stencil view to clip the plots to the graph display area.
As with the stencil graphics instructions, you cannot stack more than 8
stencil-aware widgets.
'''
__all__ = ('Graph', 'Plot', 'MeshLinePlot', 'MeshStemPlot', 'LinePlot', 'SmoothLinePlot', 'ContourPlot')
__version__ = '0.4-dev'
from math import radians
from kivy.uix.widget import Widget
from kivy.uix.label import Label
from kivy.uix.stencilview import StencilView
from kivy.properties import NumericProperty, BooleanProperty,\
BoundedNumericProperty, StringProperty, ListProperty, ObjectProperty,\
DictProperty, AliasProperty
from kivy.clock import Clock
from kivy.graphics import Mesh, Color, Rectangle
from kivy.graphics import Fbo
from kivy.graphics.transformation import Matrix
from kivy.graphics.texture import Texture
from kivy.event import EventDispatcher
from kivy.lang import Builder
from kivy import metrics
from math import log10, floor, ceil
from decimal import Decimal
try:
import numpy as np
except ImportError as e:
np = None
def identity(x):
return x
def exp10(x):
return 10 ** x
Builder.load_string('''
#:kivy 1.1.0
<RotateLabel>:
canvas.before:
PushMatrix
MatrixInstruction:
matrix: self.transform
canvas.after:
PopMatrix
''')
class RotateLabel(Label):
transform = ObjectProperty(Matrix())
class Graph(Widget):
'''Graph class, see module documentation for more information.
'''
# triggers a full reload of graphics
_trigger = ObjectProperty(None)
# triggers only a repositioning of objects due to size/pos updates
_trigger_size = ObjectProperty(None)
# triggers only a update of colors, e.g. tick_color
_trigger_color = ObjectProperty(None)
# holds widget with the x-axis label
_xlabel = ObjectProperty(None)
# holds widget with the y-axis label
_ylabel = ObjectProperty(None)
# holds all the x-axis tick mark labels
_x_grid_label = ListProperty([])
# holds all the y-axis tick mark labels
_y_grid_label = ListProperty([])
# the mesh drawing all the ticks/grids
_mesh_ticks = ObjectProperty(None)
# the mesh which draws the surrounding rectangle
_mesh_rect = ObjectProperty(None)
# a list of locations of major and minor ticks. The values are not
# but is in the axis min - max range
_ticks_majorx = ListProperty([])
_ticks_minorx = ListProperty([])
_ticks_majory = ListProperty([])
_ticks_minory = ListProperty([])
tick_color = ListProperty([.25, .25, .25, 1])
'''Color of the grid/ticks, default to 1/4. grey.
'''
background_color = ListProperty([0, 0, 0, 0])
'''Color of the background, defaults to transparent
'''
border_color = ListProperty([1, 1, 1, 1])
'''Color of the border, defaults to white
'''
label_options = DictProperty()
'''Label options that will be passed to `:class:`kivy.uix.Label`.
'''
def __init__(self, **kwargs):
super(Graph, self).__init__(**kwargs)
with self.canvas:
self._fbo = Fbo(size=self.size, with_stencilbuffer=True)
with self._fbo:
self._background_color = Color(*self.background_color)
self._background_rect = Rectangle(size=self.size)
self._mesh_ticks_color = Color(*self.tick_color)
self._mesh_ticks = Mesh(mode='lines')
self._mesh_rect_color = Color(*self.border_color)
self._mesh_rect = Mesh(mode='line_strip')
with self.canvas:
Color(1, 1, 1)
self._fbo_rect = Rectangle(size=self.size, texture=self._fbo.texture)
mesh = self._mesh_rect
mesh.vertices = [0] * (5 * 4)
mesh.indices = range(5)
self._plot_area = StencilView()
self.add_widget(self._plot_area)
t = self._trigger = Clock.create_trigger(self._redraw_all)
ts = self._trigger_size = Clock.create_trigger(self._redraw_size)
tc = self._trigger_color = Clock.create_trigger(self._update_colors)
self.bind(center=ts, padding=ts, precision=ts, plots=ts, x_grid=ts,
y_grid=ts, draw_border=ts)
self.bind(xmin=t, xmax=t, xlog=t, x_ticks_major=t, x_ticks_minor=t,
xlabel=t, x_grid_label=t, ymin=t, ymax=t, ylog=t,
y_ticks_major=t, y_ticks_minor=t, ylabel=t, y_grid_label=t,
font_size=t, label_options=t)
self.bind(tick_color=tc, background_color=tc, border_color=tc)
self._trigger()
def add_widget(self, widget):
if widget is self._plot_area:
canvas = self.canvas
self.canvas = self._fbo
super(Graph, self).add_widget(widget)
if widget is self._plot_area:
self.canvas = canvas
def remove_widget(self, widget):
if widget is self._plot_area:
canvas = self.canvas
self.canvas = self._fbo
super(Graph, self).remove_widget(widget)
if widget is self._plot_area:
self.canvas = canvas
def _get_ticks(self, major, minor, log, s_min, s_max):
if major and s_max > s_min:
if log:
s_min = log10(s_min)
s_max = log10(s_max)
# count the decades in min - max. This is in actual decades,
# not logs.
n_decades = floor(s_max - s_min)
# for the fractional part of the last decade, we need to
# convert the log value, x, to 10**x but need to handle
# differently if the last incomplete decade has a decade
# boundary in it
if floor(s_min + n_decades) != floor(s_max):
n_decades += 1 - (10 ** (s_min + n_decades + 1) - 10 **
s_max) / 10 ** floor(s_max + 1)
else:
n_decades += ((10 ** s_max - 10 ** (s_min + n_decades)) /
10 ** floor(s_max + 1))
# this might be larger than what is needed, but we delete
# excess later
n_ticks_major = n_decades / float(major)
n_ticks = int(floor(n_ticks_major * (minor if minor >=
1. else 1.0))) + 2
# in decade multiples, e.g. 0.1 of the decade, the distance
# between ticks
decade_dist = major / float(minor if minor else 1.0)
points_minor = [0] * n_ticks
points_major = [0] * n_ticks
k = 0 # position in points major
k2 = 0 # position in points minor
# because each decade is missing 0.1 of the decade, if a tick
# falls in < min_pos skip it
min_pos = 0.1 - 0.00001 * decade_dist
s_min_low = floor(s_min)
# first real tick location. value is in fractions of decades
# from the start we have to use decimals here, otherwise
# floating point inaccuracies results in bad values
start_dec = ceil((10 ** Decimal(s_min - s_min_low - 1)) /
Decimal(decade_dist)) * decade_dist
count_min = (0 if not minor else
floor(start_dec / decade_dist) % minor)
start_dec += s_min_low
count = 0 # number of ticks we currently have passed start
while True:
# this is the current position in decade that we are.
# e.g. -0.9 means that we're at 0.1 of the 10**ceil(-0.9)
# decade
pos_dec = start_dec + decade_dist * count
pos_dec_low = floor(pos_dec)
diff = pos_dec - pos_dec_low
zero = abs(diff) < 0.001 * decade_dist
if zero:
# the same value as pos_dec but in log scale
pos_log = pos_dec_low
else:
pos_log = log10((pos_dec - pos_dec_low
) * 10 ** ceil(pos_dec))
if pos_log > s_max:
break
count += 1
if zero or diff >= min_pos:
if minor and not count_min % minor:
points_major[k] = pos_log
k += 1
else:
points_minor[k2] = pos_log
k2 += 1
count_min += 1
#n_ticks = len(points)
else:
# distance between each tick
tick_dist = major / float(minor if minor else 1.0)
n_ticks = int(floor((s_max - s_min) / tick_dist) + 1)
points_major = [0] * int(floor((s_max - s_min) / float(major))
+ 1)
points_minor = [0] * (n_ticks - len(points_major) + 1)
k = 0 # position in points major
k2 = 0 # position in points minor
for m in range(0, n_ticks):
if minor and m % minor:
points_minor[k2] = m * tick_dist + s_min
k2 += 1
else:
points_major[k] = m * tick_dist + s_min
k += 1
del points_major[k:]
del points_minor[k2:]
else:
points_major = []
points_minor = []
return points_major, points_minor
def _update_labels(self):
xlabel = self._xlabel
ylabel = self._ylabel
x = self.x
y = self.y
width = self.width
height = self.height
padding = self.padding
x_next = padding + x
y_next = padding + y
xextent = width + x
yextent = height + y
ymin = self.ymin
ymax = self.ymax
xmin = self.xmin
precision = self.precision
x_overlap = False
y_overlap = False
# set up x and y axis labels
if xlabel:
xlabel.text = self.xlabel
xlabel.texture_update()
xlabel.size = xlabel.texture_size
xlabel.pos = int(x + width / 2. - xlabel.width / 2.), int(padding + y)
y_next += padding + xlabel.height
if ylabel:
ylabel.text = self.ylabel
ylabel.texture_update()
ylabel.size = ylabel.texture_size
ylabel.x = padding + x - (ylabel.width / 2. - ylabel.height / 2.)
x_next += padding + ylabel.height
xpoints = self._ticks_majorx
xlabels = self._x_grid_label
xlabel_grid = self.x_grid_label
ylabel_grid = self.y_grid_label
ypoints = self._ticks_majory
ylabels = self._y_grid_label
# now x and y tick mark labels
if len(ylabels) and ylabel_grid:
# horizontal size of the largest tick label, to have enough room
funcexp = exp10 if self.ylog else identity
funclog = log10 if self.ylog else identity
ylabels[0].text = precision % funcexp(ypoints[0])
ylabels[0].texture_update()
y1 = ylabels[0].texture_size
y_start = y_next + (padding + y1[1] if len(xlabels) and xlabel_grid
else 0) + \
(padding + y1[1] if not y_next else 0)
yextent = y + height - padding - y1[1] / 2.
ymin = funclog(ymin)
ratio = (yextent - y_start) / float(funclog(ymax) - ymin)
y_start -= y1[1] / 2.
y1 = y1[0]
for k in range(len(ylabels)):
ylabels[k].text = precision % funcexp(ypoints[k])
ylabels[k].texture_update()
ylabels[k].size = ylabels[k].texture_size
y1 = max(y1, ylabels[k].texture_size[0])
ylabels[k].pos = tuple(map(int, (x_next, y_start +
(ypoints[k] - ymin) * ratio)))
if len(ylabels) > 1 and ylabels[0].top > ylabels[1].y:
y_overlap = True
else:
x_next += y1 + padding
if len(xlabels) and xlabel_grid:
funcexp = exp10 if self.xlog else identity
funclog = log10 if self.xlog else identity
# find the distance from the end that'll fit the last tick label
xlabels[0].text = precision % funcexp(xpoints[-1])
xlabels[0].texture_update()
xextent = x + width - xlabels[0].texture_size[0] / 2. - padding
# find the distance from the start that'll fit the first tick label
if not x_next:
xlabels[0].text = precision % funcexp(xpoints[0])
xlabels[0].texture_update()
x_next = padding + xlabels[0].texture_size[0] / 2.
xmin = funclog(xmin)
ratio = (xextent - x_next) / float(funclog(self.xmax) - xmin)
right = -1
for k in range(len(xlabels)):
xlabels[k].text = precision % funcexp(xpoints[k])
# update the size so we can center the labels on ticks
xlabels[k].texture_update()
xlabels[k].size = xlabels[k].texture_size
xlabels[k].pos = tuple(map(int, (x_next + (xpoints[k] - xmin)
* ratio - xlabels[k].texture_size[0] / 2., y_next)))
if xlabels[k].x < right:
x_overlap = True
break
right = xlabels[k].right
if not x_overlap:
y_next += padding + xlabels[0].texture_size[1]
# now re-center the x and y axis labels
if xlabel:
xlabel.x = int(x_next + (xextent - x_next) / 2. - xlabel.width / 2.)
if ylabel:
ylabel.y = int(y_next + (yextent - y_next) / 2. - ylabel.height / 2.)
t = Matrix().translate(ylabel.center[0], ylabel.center[1], 0)
t = t.multiply(Matrix().rotate(-radians(270), 0, 0, 1))
ylabel.transform = t.multiply(
Matrix().translate(
-int(ylabel.center_x),
-int(ylabel.center_y),
0))
if x_overlap:
for k in range(len(xlabels)):
xlabels[k].text = ''
if y_overlap:
for k in range(len(ylabels)):
ylabels[k].text = ''
return x_next - x, y_next - y, xextent - x, yextent - y
def _update_ticks(self, size):
# re-compute the positions of the bounding rectangle
mesh = self._mesh_rect
vert = mesh.vertices
if self.draw_border:
s0, s1, s2, s3 = size
vert[0] = s0
vert[1] = s1
vert[4] = s2
vert[5] = s1
vert[8] = s2
vert[9] = s3
vert[12] = s0
vert[13] = s3
vert[16] = s0
vert[17] = s1
else:
vert[0:18] = [0 for k in range(18)]
mesh.vertices = vert
# re-compute the positions of the x/y axis ticks
mesh = self._mesh_ticks
vert = mesh.vertices
start = 0
xpoints = self._ticks_majorx
ypoints = self._ticks_majory
xpoints2 = self._ticks_minorx
ypoints2 = self._ticks_minory
ylog = self.ylog
xlog = self.xlog
xmin = self.xmin
xmax = self.xmax
if xlog:
xmin = log10(xmin)
xmax = log10(xmax)
ymin = self.ymin
ymax = self.ymax
if ylog:
xmin = log10(ymin)
ymax = log10(ymax)
if len(xpoints):
top = size[3] if self.x_grid else metrics.dp(12) + size[1]
ratio = (size[2] - size[0]) / float(xmax - xmin)
for k in range(start, len(xpoints) + start):
vert[k * 8] = size[0] + (xpoints[k - start] - xmin) * ratio
vert[k * 8 + 1] = size[1]
vert[k * 8 + 4] = vert[k * 8]
vert[k * 8 + 5] = top
start += len(xpoints)
if len(xpoints2):
top = metrics.dp(8) + size[1]
ratio = (size[2] - size[0]) / float(xmax - xmin)
for k in range(start, len(xpoints2) + start):
vert[k * 8] = size[0] + (xpoints2[k - start] - xmin) * ratio
vert[k * 8 + 1] = size[1]
vert[k * 8 + 4] = vert[k * 8]
vert[k * 8 + 5] = top
start += len(xpoints2)
if len(ypoints):
top = size[2] if self.y_grid else metrics.dp(12) + size[0]
ratio = (size[3] - size[1]) / float(ymax - ymin)
for k in range(start, len(ypoints) + start):
vert[k * 8 + 1] = size[1] + (ypoints[k - start] - ymin) * ratio
vert[k * 8 + 5] = vert[k * 8 + 1]
vert[k * 8] = size[0]
vert[k * 8 + 4] = top
start += len(ypoints)
if len(ypoints2):
top = metrics.dp(8) + size[0]
ratio = (size[3] - size[1]) / float(ymax - ymin)
for k in range(start, len(ypoints2) + start):
vert[k * 8 + 1] = size[1] + (ypoints2[k - start] - ymin) * ratio
vert[k * 8 + 5] = vert[k * 8 + 1]
vert[k * 8] = size[0]
vert[k * 8 + 4] = top
mesh.vertices = vert
def _update_plots(self, size):
ylog = self.ylog
xlog = self.xlog
xmin = self.xmin
xmax = self.xmax
ymin = self.ymin
ymax = self.ymax
for plot in self.plots:
plot._update(xlog, xmin, xmax, ylog, ymin, ymax, size)
def _update_colors(self, *args):
self._mesh_ticks_color.rgba = tuple(self.tick_color)
self._background_color.rgba = tuple(self.background_color)
self._mesh_rect_color.rgba = tuple(self.border_color)
def _redraw_all(self, *args):
# add/remove all the required labels
font_size = self.font_size
if self.xlabel:
if not self._xlabel:
xlabel = Label(font_size=font_size, **self.label_options)
self.add_widget(xlabel)
self._xlabel = xlabel
else:
xlabel = self._xlabel
if xlabel:
self.remove_widget(xlabel)
self._xlabel = None
grids = self._x_grid_label
xpoints_major, xpoints_minor = self._get_ticks(self.x_ticks_major,
self.x_ticks_minor,
self.xlog, self.xmin,
self.xmax)
self._ticks_majorx = xpoints_major
self._ticks_minorx = xpoints_minor
if not self.x_grid_label:
n_labels = 0
else:
n_labels = len(xpoints_major)
for k in range(n_labels, len(grids)):
self.remove_widget(grids[k])
del grids[n_labels:]
grid_len = len(grids)
grids.extend([None] * (n_labels - len(grids)))
for k in range(grid_len, n_labels):
grids[k] = Label(font_size=font_size, **self.label_options)
self.add_widget(grids[k])
if self.ylabel:
if not self._ylabel:
ylabel = RotateLabel(font_size=font_size, **self.label_options)
self.add_widget(ylabel)
self._ylabel = ylabel
else:
ylabel = self._ylabel
if ylabel:
self.remove_widget(ylabel)
self._ylabel = None
grids = self._y_grid_label
ypoints_major, ypoints_minor = self._get_ticks(self.y_ticks_major,
self.y_ticks_minor,
self.ylog, self.ymin,
self.ymax)
self._ticks_majory = ypoints_major
self._ticks_minory = ypoints_minor
if not self.y_grid_label:
n_labels = 0
else:
n_labels = len(ypoints_major)
for k in range(n_labels, len(grids)):
self.remove_widget(grids[k])
del grids[n_labels:]
grid_len = len(grids)
grids.extend([None] * (n_labels - len(grids)))
for k in range(grid_len, n_labels):
grids[k] = Label(font_size=font_size, **self.label_options)
self.add_widget(grids[k])
mesh = self._mesh_ticks
n_points = (len(xpoints_major) + len(xpoints_minor) +
len(ypoints_major) + len(ypoints_minor))
mesh.vertices = [0] * (n_points * 8)
mesh.indices = [k for k in range(n_points * 2)]
self._redraw_size()
def _redraw_size(self, *args):
# size a 4-tuple describing the bounding box in which we can draw
# graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
# and top right corner locations, respectively
size = self._update_labels()
self._plot_area.pos = (size[0], size[1])
self._plot_area.size = (size[2] - size[0], size[3] - size[1])
self._fbo.size = self.size
self._fbo_rect.texture = self._fbo.texture
self._fbo_rect.size = self.size
self._fbo_rect.pos = self.pos
self._background_rect.size = self.size
self._update_ticks(size)
self._update_plots(size)
def _clear_buffer(self, *largs):
fbo = self._fbo
fbo.bind()
fbo.clear_buffer()
fbo.release()
def add_plot(self, plot):
'''Add a new plot to this graph.
:Parameters:
`plot`:
Plot to add to this graph.
>>> graph = Graph()
>>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
>>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
>>> graph.add_plot(plot)
'''
if plot in self.plots:
return
add = self._plot_area.canvas.add
for instr in plot.get_drawings():
add(instr)
plot.bind(on_clear_plot=self._clear_buffer)
self.plots.append(plot)
def remove_plot(self, plot):
'''Remove a plot from this graph.
:Parameters:
`plot`:
Plot to remove from this graph.
>>> graph = Graph()
>>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
>>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
>>> graph.add_plot(plot)
>>> graph.remove_plot(plot)
'''
if plot not in self.plots:
return
remove = self._plot_area.canvas.remove
for instr in plot.get_drawings():
remove(instr)
plot.unbind(on_clear_plot=self._clear_buffer)
self.plots.remove(plot)
def collide_plot(self, x, y):
'''Determine if the given coordinates fall inside the plot area.
:Parameters:
`x, y`:
The coordinates to test (in window coords).
'''
adj_x, adj_y = x - self._plot_area.pos[0], y - self._plot_area.pos[1]
return 0 <= adj_x <= self._plot_area.size[0] \
and 0 <= adj_y <= self._plot_area.size[1]
def to_data(self, x, y):
'''Convert window coords to data coords.
:Parameters:
`x, y`:
The coordinates to convert (in window coords).
'''
adj_x = float(x - self._plot_area.pos[0])
adj_y = float(y - self._plot_area.pos[1])
norm_x = adj_x / self._plot_area.size[0]
norm_y = adj_y / self._plot_area.size[1]
if self.xlog:
xmin, xmax = log10(self.xmin), log10(self.xmax)
conv_x = 10.**(norm_x * (xmax - xmin) + xmin)
else:
conv_x = norm_x * (self.xmax - self.xmin) + self.xmin
if self.ylog:
ymin, ymax = log10(self.ymin), log10(self.ymax)
conv_y = 10.**(norm_y * (ymax - ymin) + ymin)
else:
conv_y = norm_y * (self.ymax - self.ymin) + self.ymin
return [conv_x, conv_y]
xmin = NumericProperty(0.)
'''The x-axis minimum value.
If :data:`xlog` is True, xmin must be larger than zero.
:data:`xmin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
xmax = NumericProperty(100.)
'''The x-axis maximum value, larger than xmin.
:data:`xmax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
xlog = BooleanProperty(False)
'''Determines whether the x-axis should be displayed logarithmically (True)
or linearly (False).
:data:`xlog` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
x_ticks_major = BoundedNumericProperty(0, min=0)
'''Distance between major tick marks on the x-axis.
Determines the distance between the major tick marks. Major tick marks
start from min and re-occur at every ticks_major until :data:`xmax`.
If :data:`xmax` doesn't overlap with a integer multiple of ticks_major,
no tick will occur at :data:`xmax`. Zero indicates no tick marks.
If :data:`xlog` is true, then this indicates the distance between ticks
in multiples of current decade. E.g. if :data:`xmin` is 0.1 and
ticks_major is 0.1, it means there will be a tick at every 10th of the
decade, i.e. 0.1 ... 0.9, 1, 2... If it is 0.3, the ticks will occur at
0.1, 0.3, 0.6, 0.9, 2, 5, 8, 10. You'll notice that it went from 8 to 10
instead of to 20, that's so that we can say 0.5 and have ticks at every
half decade, e.g. 0.1, 0.5, 1, 5, 10, 50... Similarly, if ticks_major is
1.5, there will be ticks at 0.1, 5, 100, 5,000... Also notice, that there's
always a major tick at the start. Finally, if e.g. :data:`xmin` is 0.6
and this 0.5 there will be ticks at 0.6, 1, 5...
:data:`x_ticks_major` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
x_ticks_minor = BoundedNumericProperty(0, min=0)
'''The number of sub-intervals that divide x_ticks_major.
Determines the number of sub-intervals into which ticks_major is divided,
if non-zero. The actual number of minor ticks between the major ticks is
ticks_minor - 1. Only used if ticks_major is non-zero. If there's no major
tick at xmax then the number of minor ticks after the last major
tick will be however many ticks fit until xmax.
If self.xlog is true, then this indicates the number of intervals the
distance between major ticks is divided. The result is the number of
multiples of decades between ticks. I.e. if ticks_minor is 10, then if
ticks_major is 1, there will be ticks at 0.1, 0.2...0.9, 1, 2, 3... If
ticks_major is 0.3, ticks will occur at 0.1, 0.12, 0.15, 0.18... Finally,
as is common, if ticks major is 1, and ticks minor is 5, there will be
ticks at 0.1, 0.2, 0.4... 0.8, 1, 2...
:data:`x_ticks_minor` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
x_grid = BooleanProperty(False)
'''Determines whether the x-axis has tick marks or a full grid.
If :data:`x_ticks_major` is non-zero, then if x_grid is False tick marks
will be displayed at every major tick. If x_grid is True, instead of ticks,
a vertical line will be displayed at every major tick.
:data:`x_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
x_grid_label = BooleanProperty(False)
'''Whether labels should be displayed beneath each major tick. If true,
each major tick will have a label containing the axis value.
:data:`x_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
defaults to False.
'''
xlabel = StringProperty('')
'''The label for the x-axis. If not empty it is displayed in the center of
the axis.
:data:`xlabel` is a :class:`~kivy.properties.StringProperty`,
defaults to ''.
'''
ymin = NumericProperty(0.)
'''The y-axis minimum value.
If :data:`ylog` is True, ymin must be larger than zero.
:data:`ymin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
ymax = NumericProperty(100.)
'''The y-axis maximum value, larger than ymin.
:data:`ymax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
ylog = BooleanProperty(False)
'''Determines whether the y-axis should be displayed logarithmically (True)
or linearly (False).
:data:`ylog` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
y_ticks_major = BoundedNumericProperty(0, min=0)
'''Distance between major tick marks. See :data:`x_ticks_major`.
:data:`y_ticks_major` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
y_ticks_minor = BoundedNumericProperty(0, min=0)
'''The number of sub-intervals that divide ticks_major.
See :data:`x_ticks_minor`.
:data:`y_ticks_minor` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
y_grid = BooleanProperty(False)
'''Determines whether the y-axis has tick marks or a full grid. See
:data:`x_grid`.
:data:`y_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
y_grid_label = BooleanProperty(False)
'''Whether labels should be displayed beneath each major tick. If true,
each major tick will have a label containing the axis value.
:data:`y_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
defaults to False.
'''
ylabel = StringProperty('')
'''The label for the y-axis. If not empty it is displayed in the center of
the axis.
:data:`ylabel` is a :class:`~kivy.properties.StringProperty`,
defaults to ''.
'''
padding = NumericProperty('5dp')
'''Padding distances between the labels, axes titles and graph, as
well between the widget and the objects near the boundaries.
:data:`padding` is a :class:`~kivy.properties.NumericProperty`, defaults
to 5dp.
'''
font_size = NumericProperty('15sp')
'''Font size of the labels.
:data:`font_size` is a :class:`~kivy.properties.NumericProperty`, defaults
to 15sp.
'''
precision = StringProperty('%g')
'''Determines the numerical precision of the tick mark labels. This value
governs how the numbers are converted into string representation. Accepted
values are those listed in Python's manual in the
"String Formatting Operations" section.
:data:`precision` is a :class:`~kivy.properties.StringProperty`, defaults
to '%g'.
'''
draw_border = BooleanProperty(True)
'''Whether a border is drawn around the canvas of the graph where the
plots are displayed.
:data:`draw_border` is a :class:`~kivy.properties.BooleanProperty`,
defaults to True.
'''
plots = ListProperty([])
'''Holds a list of all the plots in the graph. To add and remove plots
from the graph use :data:`add_plot` and :data:`add_plot`. Do not add
directly edit this list.
:data:`plots` is a :class:`~kivy.properties.ListProperty`,
defaults to [].
'''
class Plot(EventDispatcher):
'''Plot class, see module documentation for more information.
:Events:
`on_clear_plot`
Fired before a plot updates the display and lets the fbo know that
it should clear the old drawings.
..versionadded:: 0.4
'''
__events__ = ('on_clear_plot', )
# most recent values of the params used to draw the plot
params = DictProperty({'xlog': False, 'xmin': 0, 'xmax': 100,
'ylog': False, 'ymin': 0, 'ymax': 100,
'size': (0, 0, 0, 0)})
color = ListProperty([1, 1, 1, 1])
'''Color of the plot.
'''
points = ListProperty([])
'''List of (x, y) points to be displayed in the plot.
The elements of points are 2-tuples, (x, y). The points are displayed
based on the mode setting.
:data:`points` is a :class:`~kivy.properties.ListProperty`, defaults to
[].
'''
def __init__(self, **kwargs):
super(Plot, self).__init__(**kwargs)
self.ask_draw = Clock.create_trigger(self.draw)
self.bind(params=self.ask_draw, points=self.ask_draw)
self._drawings = self.create_drawings()
# this function is called by graph whenever any of the parameters
# change. The plot should be recalculated then.
# log, min, max indicate the axis settings.
# size a 4-tuple describing the bounding box in which we can draw
# graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
# and top right corner locations, respectively.
def update(self, xlog, xmin, xmax, ylog, ymin, ymax, size):
self.params.update({
'xlog': xlog, 'xmin': xmin, 'xmax': xmax, 'ylog': ylog,
'ymin': ymin, 'ymax': ymax, 'size': size})
# returns a string which is unique and is the group name given to all the
# instructions returned by _get_drawings. Graph uses this to remove
# these instructions when needed.
def get_group(self):
return ''
# returns a list of canvas instructions that will be added to the graph's
# canvas.
def get_drawings(self):
if isinstance(self._drawings, (tuple, list)):
return self._drawings
return []
# method called once to create all the canvas instructions needed for the
# plot
def create_drawings(self):
pass
# draw the plot according to the params. It dispatches on_clear_plot
# so derived classes should call super before updating.
def draw(self, *largs):
self.dispatch('on_clear_plot')
def iterate_points(self):
'''Iterate on all the points adjusted to the graph settings
'''
params = self._params
funcx = log10 if params['xlog'] else lambda x: x
funcy = log10 if params['ylog'] else lambda x: x
xmin = funcx(params['xmin'])
ymin = funcy(params['ymin'])
size = params['size']
ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
for x, y in self.points:
yield (
(funcx(x) - xmin) * ratiox + size[0],
(funcy(y) - ymin) * ratioy + size[1])
def on_clear_plot(self, *largs):
pass
# compatibility layer
_update = update
_get_drawings = get_drawings
_params = params
class MeshLinePlot(Plot):
'''MeshLinePlot class which displays a set of points similar to a mesh.
'''
def create_drawings(self):
self._color = Color(*self.color)
self._mesh = Mesh(mode='line_strip')
self.bind(color=lambda instr, value: setattr(self._color, "rgba", value))
return [self._color, self._mesh]
def draw(self, *args):
super(MeshLinePlot, self).draw(*args)
points = self.points
mesh = self._mesh
vert = mesh.vertices
ind = mesh.indices
params = self._params
funcx = log10 if params['xlog'] else lambda x: x
funcy = log10 if params['ylog'] else lambda x: x
xmin = funcx(params['xmin'])
ymin = funcy(params['ymin'])
diff = len(points) - len(vert) // 4
size = params['size']
ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
if diff < 0:
del vert[4 * len(points):]
del ind[len(points):]
elif diff > 0:
ind.extend(range(len(ind), len(ind) + diff))
vert.extend([0] * (diff * 4))
for k in range(len(points)):
vert[k * 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
vert[k * 4 + 1] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
mesh.vertices = vert
def _set_mode(self, value):
if hasattr(self, '_mesh'):
self._mesh.mode = value
mode = AliasProperty(lambda self: self._mesh.mode, _set_mode)