-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_engine_sae.py
236 lines (191 loc) · 7.15 KB
/
training_engine_sae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import division
import cv2
import numpy as np
import random as rd
import os
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dropout, UpSampling2D, Concatenate
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.backend import image_data_format
#import keras
import tensorflow as tf
import threading
# ===========================
# SETTINGS
# ===========================
# gpu_options = tf.GPUOptions(
# allow_growth=True,
# per_process_gpu_memory_fraction=0.40
# )
# sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# keras.backend.tensorflow_backend.set_session(sess)
VALIDATION_SPLIT = 0.2
# BATCH_SIZE = 16
# ===========================
class threadsafe_iter:
"""Takes an iterator/generator and makes it thread-safe by
serializing call to the `next` method of given iterator/generator.
"""
def __init__(self, it):
self.it = it
self.lock = threading.Lock()
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.it)
def get_input_shape(height, width, channels=3):
if image_data_format() == "channels_first":
return (channels, height, width)
else:
return (height, width, channels)
def get_sae(height, width, pretrained_weights=None):
ff = 32
inputs = Input(shape=get_input_shape(height, width))
conv1 = Conv2D(
ff, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(inputs)
conv1 = Conv2D(
ff, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(
ff * 2, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(pool1)
conv2 = Conv2D(
ff * 2, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(
ff * 8, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(pool2)
conv7 = Conv2D(
ff * 8, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv3)
up8 = UpSampling2D(size=(2, 2))(conv7)
up8 = Conv2D(
ff * 4, 2, activation="relu", padding="same", kernel_initializer="he_normal"
)(up8)
merge8 = Concatenate(axis=3)([conv2, up8])
conv8 = Conv2D(
ff * 4, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(merge8)
conv8 = Conv2D(
ff * 4, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv8)
up9 = UpSampling2D(size=(2, 2))(conv8)
up9 = Conv2D(
ff * 2, 2, activation="relu", padding="same", kernel_initializer="he_normal"
)(up9)
merge9 = Concatenate(axis=3)([conv1, up9])
conv9 = Conv2D(
ff * 2, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(merge9)
conv9 = Conv2D(
ff * 2, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv9)
conv9 = Conv2D(
2, 3, activation="relu", padding="same", kernel_initializer="he_normal"
)(conv9)
conv10 = Conv2D(1, 1, activation="sigmoid")(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(
optimizer=Adam(lr=1e-4), loss="binary_crossentropy", metrics=["accuracy"]
)
if pretrained_weights is not None:
model.load_weights(pretrained_weights)
return model
def threadsafe_generator(f):
"""A decorator that takes a generator function and makes it thread-safe."""
def g(*a, **kw):
return threadsafe_iter(f(*a, **kw))
return g
@threadsafe_generator # Credit: https://anandology.com/blog/using-iterators-and-generators/
def createGenerator(input_images, segmented_images, idx_label, patch_height, patch_width, batch_size):
while True:
selected_page_idx = np.random.randint(len(input_images)) # Changed len to grs from gr
gr = input_images[selected_page_idx]
label = str(idx_label)
gt = segmented_images[selected_page_idx][label]
potential_training_examples = np.where(gt[:-patch_height, :-patch_width] == 1)
gr_chunks = []
gt_chunks = []
num_coords = len(potential_training_examples[0])
index_coords_selected = [
np.random.randint(0, num_coords) for _ in range(batch_size)
]
x_coords = potential_training_examples[0][index_coords_selected]
y_coords = potential_training_examples[1][index_coords_selected]
for i in range(batch_size):
row = x_coords[i]
col = y_coords[i]
gr_sample = gr[
row : row + patch_height, col : col + patch_width
] # Greyscale image
gt_sample = gt[
row : row + patch_height, col : col + patch_width
] # Ground truth
gr_chunks.append(gr_sample)
gt_chunks.append(gt_sample)
gr_chunks_arr = np.array(gr_chunks)
gt_chunks_arr = np.array(gt_chunks)
# convert gr_chunks and gt_chunks to the numpy arrays that are yield below
yield gr_chunks_arr, gt_chunks_arr # convert into npy before yielding
def getTrain(input_images, gts, num_labels, patch_height, patch_width, batch_size):
generator_labels = []
print("num_labels", num_labels)
for idx_label in range(num_labels):
print("idx_label", idx_label)
generator_label = createGenerator(
input_images, gts, idx_label, patch_height, patch_width, batch_size
)
generator_labels.append(generator_label)
print(generator_labels)
return generator_labels
def train_msae(
input_images,
gts,
num_labels,
height,
width,
output_path,
epochs,
max_samples_per_class,
batch_size=16,
):
# Create ground_truth
print("Creating data generators...")
generators = getTrain(input_images, gts, num_labels, height, width, batch_size)
# Training loop
for label in range(num_labels):
print("Training a new model for label #{}".format(str(label)))
model = get_sae(height=height, width=width)
# model.summary()
new_output_path = os.path.join(output_path[str(label)] + '.h5')
callbacks_list = [
ModelCheckpoint(
new_output_path,
save_best_only=True,
monitor="val_accuracy",
verbose=1,
mode="max",
),
EarlyStopping(monitor="val_accuracy", patience=3, verbose=0, mode="max"),
]
# Training stage
model.fit(
generators[label],
verbose=2,
steps_per_epoch=max_samples_per_class // batch_size,
validation_data=generators[label],
validation_steps=100,
callbacks=callbacks_list,
epochs=epochs,
)
os.rename(new_output_path, output_path[str(label)])
return 0
# Debugging code
if __name__ == "__main__":
print("Must be run from Rodan")