-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_engine.py
159 lines (113 loc) · 5.03 KB
/
training_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import cv2
import numpy as np
import random as rd
import os
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Input
from tensorflow.keras.optimizers import Adadelta
from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint
from tensorflow.keras.backend import image_data_format
from tensorflow.keras.layers import BatchNormalization
# ===========================
# SETTINGS
# ===========================
VALIDATION_SPLIT=0.2
BATCH_SIZE = 16
# ===========================
def get_input_shape(height, width, channels = 3):
if image_data_format() == 'channels_first':
return (channels, height, width)
else:
return (height, width, channels)
def get_convnet(height, width, labels):
img_input = Input(shape=get_input_shape(height,width))
x = img_input
for layer in range(1,5):
x = Conv2D(filters=32*layer, kernel_size=(3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(labels,activation='softmax')(x)
return Model(img_input, x, name='calvonet')
def getTrain(input_image, gt, hspan, vspan, num_labels, max_samples_per_class):
X_train = []
Y_train = []
# Speed-up factor
factor = 10.
# Calculate the ratio per label
count = [0] * num_labels
for page in range(len(input_image)):
for i in range(num_labels):
count[i] += (gt[page] == i).sum()
samples_per_class = min(np.min(count), max_samples_per_class)
ratio = [0] * num_labels
for i in range(num_labels):
ratio[i] = factor * (samples_per_class/float(count[i]))
# Just for checking !
count_per_class = [0] * num_labels
# Get samples according to the ratio per label
for page in range(len(input_image)):
page_x = input_image[page]
page_y = gt[page]
[height, width] = page_y.shape
for row in range(vspan,height-vspan-1):
for col in range(hspan,width-hspan-1):
if rd.random() < 1./factor:
label = page_y[row][col]
if 0 <= label < num_labels: # Avoid possible noise in the GT or -1 (unknown pixel)
if rd.random() < ratio[label]: # Take samples according to its
sample = page_x[row-vspan:row+vspan+1,col-hspan:col+hspan+1]
# Categorical vector
y_label = [0]*num_labels
y_label[label] = 1
X_train.append(sample)
Y_train.append(y_label)
count_per_class[label] += 1
# Manage different ordering
if image_data_format() == 'channels_first':
X_train = np.asarray(X_train).reshape(len(X_train), 3, vspan*2 + 1, hspan*2 + 1)
else:
X_train = np.asarray(X_train).reshape(len(X_train), vspan*2 + 1, hspan*2 + 1, 3)
Y_train = np.asarray(Y_train).reshape(len(Y_train), num_labels)
print('Distribution of data per class: ' + str(count_per_class))
return [X_train, Y_train]
def train_model(input_image, gt, hspan, vspan, output_model_path, max_samples_per_class, epochs, num_labels = 4):
# -------------------------------------------------------------------------------------------------------------------
# Create training set
[X_train, Y_train] = getTrain([input_image], [gt],
hspan, vspan,
num_labels,
max_samples_per_class=max_samples_per_class)
print('Training created with ' + str(len(X_train)) + ' samples.')
# Training configuration
print('Training a new model')
model = get_convnet(
height=hspan * 2 + 1,
width=vspan * 2 + 1,
labels=num_labels
)
#model.summary()
# In Tensorflow 2, it is necessary to add '.h5' to the end of the filename to force saving
# in hdf5 format with a ModelCheckpoint. Rodan will not accept anything but the file's
# original filename, however, so we must rename it back after training.
new_output_path = os.path.join(output_model_path + '.h5')
callbacks_list = [
ModelCheckpoint(new_output_path, save_best_only=True, monitor='val_acc', verbose=1, mode='max'),
EarlyStopping(monitor='val_acc', patience=3, verbose=0, mode='max')
]
model.compile(loss='categorical_crossentropy',
optimizer=Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
metrics=["accuracy"])
# Training stage
model.fit(X_train, Y_train,
verbose=2,
batch_size=BATCH_SIZE,
validation_split=VALIDATION_SPLIT,
callbacks=callbacks_list,
epochs=epochs
)
# Rename the file back to what Rodan expects.
os.rename(new_output_path, output_model_path)
return 0