-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathAdapt_gpu.cu
1776 lines (1410 loc) · 51.1 KB
/
Adapt_gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file contains functions for the model adaptivity.
bool isPow2(int x)
{
//Greg Hewgill great explanation here:
//https://stackoverflow.com/questions/600293/how-to-check-if-a-number-is-a-power-of-2
//Note, this function will report true for 0, which is not a power of 2 but it is handy for us here
return (x & (x - 1)) == 0;
}
/*! \fn template <class T> __host__ __device__ double calcres(T dx, int level)
*
* Template function to calculate the grid cell size based on level and initial/seed dx
*
*/
template <class T>
__host__ __device__ double calcres(T dx, int level)
{
return level < 0 ? dx * (1 << abs(level)) : dx / (1 << level);
}
/*! \fn int wetdrycriteria(Param XParam, bool*& refine, bool*& coarsen)
* Simple wet/.dry refining criteria.
* if the block is wet -> refine is true
* if the block is dry -> coarsen is true
* beware the refinement sanity check is meant to be done after running this function
*/
int wetdrycriteria(Param XParam, bool*& refine, bool*& coarsen)
{
// First use a simple refining criteria: wet or dry
int success = 0;
//int i;
//Coarsen dry blocks and refine wet ones
//CPU version
// To start
bool iswet = false;
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
refine[ib] = false; // only refine if all are wet
coarsen[ib] = true; // always try to coarsen
iswet = false;
for (int iy = 0; iy < XParam.blkwidth; iy++)
{
for (int ix = 0; ix < XParam.blkwidth; ix++)
{
int i = ix + iy * XParam.blkwidth + ib * XParam.blksize;
if (hh[i] > XParam.eps)
{
iswet = true;
}
}
}
refine[ib] = iswet;
coarsen[ib] = !iswet;
//printf("ib=%d; refibe[ib]=%s\n", ib, iswet ? "true" : "false");
}
return success;
}
/*! \fn int inrangecriteria(Param XParam,T zmin,T zmax, bool*& refine, bool*& coarsen, T* z)
* Simple in-range refining criteria.
* if any value of z (could be any variable) is zmin <= z <= zmax the block will try to refine
* otherwise, the block will try to coarsen
* beware the refinement sanity check is meant to be done after running this function
*/
template<class T>
int inrangecriteria(Param XParam,T zmin,T zmax, bool*& refine, bool*& coarsen, T* z)
{
// First use a simple refining criteria: zb>zmin && zb<zmax refine otherwise corasen
int success = 0;
//int i;
// To start
bool isinrange = false;
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
refine[ib] = false; // only refine if zb is in range
coarsen[ib] = true; // always try to coarsen otherwise
isinrange = false;
for (int iy = 0; iy < XParam.blkwidth; iy++)
{
for (int ix = 0; ix < XParam.blkwidth; ix++)
{
int i = ix + iy * XParam.blkwidth + ib * XParam.blksize;
if (z[i] >= zmin && z[i] <= zmax)
{
isinrange = true;
}
}
}
refine[ib] = isinrange;
coarsen[ib] = !isinrange;
//printf("ib=%d; refibe[ib]=%s\n", ib, iswet ? "true" : "false");
}
return success;
}
/*! \fn bool refinesanitycheck(Param XParam, bool*& refine, bool*& coarsen)
* check and correct the sanity of first order refining/corasening criteria.
*
*
*
*/
bool refinesanitycheck(Param XParam, bool*& refine, bool*& coarsen)
{
// Can't actually refine if the level is the max level (i.e. finest)
// this may be over-ruled later on
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
if (refine[ib] == true && level[ib] == XParam.maxlevel)
{
refine[ib] = false;
//printf("ib=%d; level[ib]=%d\n", ib, level[ib]);
}
if (coarsen[ib] == true && level[ib] == XParam.minlevel)
{
coarsen[ib] = false;
}
}
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
if (refine[ib] == true)
{
coarsen[rightblk[ib]] = false;
coarsen[leftblk[ib]] = false;
coarsen[topblk[ib]] = false;
coarsen[botblk[ib]] = false;
}
}
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
if (coarsen[ib] == true)
{
int levi = level[ib];
//printf("ib=%d; leftblk[ib]=%d; rightblk[ib]=%d, topblk[ib]=%d, botblk[ib]=%d\n", ib, leftblk[ib], rightblk[ib], topblk[ib], botblk[ib]);
if (levi < level[leftblk[ib]] || levi < level[rightblk[ib]] || levi < level[topblk[ib]] || levi < level[botblk[ib]])
{
coarsen[ib] = false;
}
}
}
// This below could be cascading so need to iterate sevral time
int iter = 1;
while (iter > 0)
{
iter = 0;
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
//check whether neighbour need refinement
if (refine[ib] == true)
{
if (refine[topblk[ib]] == false && (level[topblk[ib]] < level[ib]))
{
refine[topblk[ib]] = true;
coarsen[topblk[ib]] = false;
iter = 1;
}
if ((level[topblk[ib]] == level[ib]))
{
coarsen[topblk[ib]] = false;
}
if (refine[botblk[ib]] == false && (level[botblk[ib]] < level[ib]))
{
refine[botblk[ib]] = true;
coarsen[botblk[ib]] = false;
iter = 1;
}
if ((level[botblk[ib]] == level[ib]))
{
coarsen[botblk[ib]] = false;
}
if (refine[leftblk[ib]] == false && (level[leftblk[ib]] < level[ib]))
{
refine[leftblk[ib]] = true;
coarsen[leftblk[ib]] = false;
iter = 1;
}
if ((level[leftblk[ib]] == level[ib]))
{
coarsen[leftblk[ib]] = false;
}
if (refine[rightblk[ib]] == false && (level[rightblk[ib]] < level[ib]))
{
refine[rightblk[ib]] = true;
coarsen[rightblk[ib]] = false;
iter = 1;
}
if ((level[rightblk[ib]] == level[ib]))
{
coarsen[rightblk[ib]] = false;
}
}
/*
// This section below is commented because it does the same thing as above but from a different point of view.
if (refine[ib] == false)
{
//printf("ib=%d; refine[topblk[ib]]=%d; refine[rightblk[topblk[ib]]]=%d;\n", ib, refine[topblk[ib]], refine[rightblk[topblk[ib]]]);
//topleft blk
if (refine[topblk[ib]] == true && (level[topblk[ib]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
//top right if lev=lev+1
if ((level[topblk[ib]] - level[ib]) > 0)
{
if (refine[rightblk[topblk[ib]]] == true && (level[rightblk[topblk[ib]]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
}
//bot left
if (refine[botblk[ib]] == true && (level[botblk[ib]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
//bot right
if ((level[botblk[ib]] - level[ib]) > 0)
{
if (refine[rightblk[botblk[ib]]] == true && (level[rightblk[botblk[ib]]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
}
//Left bottom
if (refine[leftblk[ib]] == true && (level[leftblk[ib]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
//printf("ib=%d; leftblk[ib]=%d\n", ib, leftblk[ib]);
if ((level[leftblk[ib]] - level[ib]) > 0)
{
//left top
if (refine[topblk[leftblk[ib]]] == true && (level[topblk[leftblk[ib]]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
}
if (refine[rightblk[ib]] == true && (level[rightblk[ib]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
if ((level[rightblk[ib]] - level[ib]) > 0)
{
//
if (refine[topblk[rightblk[ib]]] == true && (level[topblk[rightblk[ib]]] - level[ib]) > 0)
{
refine[ib] = true;
coarsen[ib] = false;
iter = 1;
}
}
}
*/
}
}
// Can't actually coarsen if top, right and topright block are not all corsen
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
//printf("ib=%d\n", ib);
// if all the neighbour are not wet then coarsen if possible
double dxfac = calcres(XParam.dx, level[ib]);
//printf("blockxo_d[ib]=%f, dxfac=%f, ((blx-xo)/dx)%2=%d\n", blockxo_d[ib], dxfac, (int((blockxo_d[ib] - XParam.xo) / dxfac / XParam.blkwidth) % 2));
//only check for coarsening if the block analysed is a lower left corner block of the lower level
//need to prevent coarsenning if the block is on the model edges...
//((int((blockxo_d[ib] - XParam.xo) / dxfac) % 2) == 0 && (int((blockyo_d[ib] - XParam.yo) / dxfac) % 2) == 0) && rightblk[ib] != ib && topblk[ib] != ib && rightblk[topblk[ib]] != topblk[ib]
if (coarsen[ib] == true)
{
//if this block is a lower left corner block of teh potentialy coarser block
if (((int((blockxo_d[ib] - XParam.xo) / dxfac / XParam.blkwidth) % 2) == 0 && (int((blockyo_d[ib] - XParam.yo) / dxfac / XParam.blkwidth) % 2) == 0 && rightblk[ib] != ib && topblk[ib] != ib && rightblk[topblk[ib]] != topblk[ib]))
{
//if all the neighbour blocks ar at the same level
if (level[ib] == level[rightblk[ib]] && level[ib] == level[topblk[ib]] && level[ib] == level[rightblk[topblk[ib]]])
{
//printf("Is it true?\t");
//if right, top and topright block teh same level and can coarsen
if (coarsen[rightblk[ib]] == true && coarsen[topblk[ib]] == true && coarsen[rightblk[topblk[ib]]] == true)
{
//Yes
//printf("Yes!\n");
//coarsen[ib] = true;
}
else
{
coarsen[ib] = false;
}
}
else
{
coarsen[ib] = false;
}
}
else
{
coarsen[ib] = false;
}
}
}
return true;
}
/*! \fn Param adapt(Param XParam)
* perform refining/corasening
*
*
*
*/
Param adapt(Param XParam)
{
// This function works in several interconnected step
// At this stage it works but is very hard to follow or debug
// while the function is not particularly well written it is a complex proble to breakup in small peices
//===================================================================
// Calculate invactive blk and cumsumblk
// invactiveblk is used to deasctivate the 3 stale block from a coarsened group and to identify which block in memory is available
// cumsum will determine where the new blocks will be located in the memory
// availblk[csumblk[refine_block]]
int csum = -3;
int nrefineblk = 0;
int ncoarsenlk = 0;
int nnewblk = 0;
for (int ibl = 0; ibl < XParam.nblkmem; ibl++)
{
invactive[ibl] = -1;
}
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
invactive[ib] = ibl;
// When refining we need csum
if (refine[ib]==true)
{
nrefineblk++;
csum = csum+3;
}
if (coarsen[ib] == true)
{
ncoarsenlk++;
}
csumblk[ib] = csum;
}
//=========================================
// Reconstruct availblk
XParam.navailblk = 0;
for (int ibl = 0; ibl < XParam.nblkmem; ibl++)
{
if (invactive[ibl] == -1)
{
availblk[XParam.navailblk] = ibl;
XParam.navailblk++;
}
}
// How many new block are needed
// This below would be ideal but I don't see how that could work.
// One issue is to make the newly coarsen blocks directly available in the section above but that would make the code even more confusingalthough we haven't taken them into account in the
//nnewblk = 3*nrefineblk - ncoarsenlk*3;
// Below is conservative and keeps the peice of code above a bit more simple
nnewblk = 3 * nrefineblk;
printf("There are %d active blocks (%d blocks allocated in memory), %d blocks to be refined, %d blocks to be coarsen (with neighbour); %d blocks untouched; %d blocks to be freed (%d are already available) %d new blocks will be created\n",XParam.nblk,XParam.nblkmem, nrefineblk, ncoarsenlk, XParam.nblk- nrefineblk-4* ncoarsenlk, ncoarsenlk * 3 , XParam.navailblk, nnewblk);
//===============================================
// Reallocate memory if necessary
if (nnewblk>XParam.navailblk)
{
//reallocate memory to make more room
int nblkmem,oldblkmem;
oldblkmem = XParam.nblkmem;
nblkmem = (int)ceil((XParam.nblk + nnewblk)* XParam.membuffer);
XParam.nblkmem = nblkmem;
// HH UU VV ZS ZB
ReallocArray(nblkmem, XParam.blksize, hh);
ReallocArray(nblkmem, XParam.blksize, zs);
ReallocArray(nblkmem, XParam.blksize, zb);
ReallocArray(nblkmem, XParam.blksize, uu);
ReallocArray(nblkmem, XParam.blksize, vv);
// Also need to reallocate all the others!
ReallocArray(XParam.nblkmem, XParam.blksize, hho);
ReallocArray(XParam.nblkmem, XParam.blksize, zso);
ReallocArray(XParam.nblkmem, XParam.blksize, uuo);
ReallocArray(XParam.nblkmem, XParam.blksize, vvo);
ReallocArray(XParam.nblkmem, XParam.blksize, dzsdx);
ReallocArray(XParam.nblkmem, XParam.blksize, dhdx);
ReallocArray(XParam.nblkmem, XParam.blksize, dudx);
ReallocArray(XParam.nblkmem, XParam.blksize, dvdx);
ReallocArray(XParam.nblkmem, XParam.blksize, dzsdy);
ReallocArray(XParam.nblkmem, XParam.blksize, dhdy);
ReallocArray(XParam.nblkmem, XParam.blksize, dudy);
ReallocArray(XParam.nblkmem, XParam.blksize, dvdy);
ReallocArray(XParam.nblkmem, XParam.blksize, Su);
ReallocArray(XParam.nblkmem, XParam.blksize, Sv);
ReallocArray(XParam.nblkmem, XParam.blksize, Fhu);
ReallocArray(XParam.nblkmem, XParam.blksize, Fhv);
ReallocArray(XParam.nblkmem, XParam.blksize, Fqux);
ReallocArray(XParam.nblkmem, XParam.blksize, Fquy);
ReallocArray(XParam.nblkmem, XParam.blksize, Fqvx);
ReallocArray(XParam.nblkmem, XParam.blksize, Fqvy);
ReallocArray(XParam.nblkmem, XParam.blksize, dh);
ReallocArray(XParam.nblkmem, XParam.blksize, dhu);
ReallocArray(XParam.nblkmem, XParam.blksize, dhv);
ReallocArray(XParam.nblkmem, XParam.blksize, cf);
//also reallocate Blk info
ReallocArray(nblkmem, 1, blockxo);
ReallocArray(nblkmem, 1, blockyo);
ReallocArray(nblkmem, 1, blockxo_d);
ReallocArray(nblkmem, 1, blockyo_d);
ReallocArray(nblkmem, 1, leftblk);
ReallocArray(nblkmem, 1, rightblk);
ReallocArray(nblkmem, 1, topblk);
ReallocArray(nblkmem, 1, botblk);
ReallocArray(nblkmem, 1, level);
ReallocArray(nblkmem, 1, newlevel);
ReallocArray(nblkmem, 1, activeblk);
ReallocArray(nblkmem, 1, invactive);
ReallocArray(nblkmem, 1, availblk);
ReallocArray(nblkmem, 1, csumblk);
ReallocArray(nblkmem, 1, coarsen);
ReallocArray(nblkmem, 1, refine);
// Reconstruct blk info
XParam.navailblk = 0;
for (int ibl = 0; ibl < (XParam.nblkmem - XParam.nblk); ibl++)
{
activeblk[XParam.nblk + ibl] = -1;
coarsen[XParam.nblk + ibl] = false;
refine[XParam.nblk + ibl] = false;
//printf("ibl=%d; availblk[ibl]=%d;\n",ibl, availblk[ibl]);
}
for (int ibl = 0; ibl < (XParam.nblkmem - oldblkmem); ibl++)
{
invactive[oldblkmem + ibl] = -1;
}
for (int ibl = 0; ibl < XParam.nblkmem; ibl++)
{
if (invactive[ibl] == -1)
{
availblk[XParam.navailblk] = ibl;
XParam.navailblk++;
}
}
printf("Reallocation complete: %d new blocks are available\n", XParam.navailblk);
}
//printf("csumblk[0]=%d availblk[csumblk[0]]=%d\n", csumblk[0], availblk[csumblk[0]]);
//===========================================================
// Start coarsening and refinement
// First Initialise newlevel (Do this every time because new level is reused later)
for (int ibl = 0; ibl < XParam.nblkmem; ibl++)
{
// Set newlevel
newlevel[ibl] = level[ibl];
}
//=========================================================
// COARSEN
//=========================================================
// This is a 2 step process
// 1. First deal with the conserved variables (hh,uu,vv,zs,zb)
// 2. Deactivate the block
// 3. Fix neighbours
//____________________________________________________
//
// Step 1 & 2: Average conserved variables and deactivate the blocks
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
int i, ii, ir , it , itr;
if (coarsen[ib] == true)
{
double dxfac = calcres(XParam.dx, level[ib]);
int xnode = int((blockxo_d[ib] - XParam.xo) / dxfac / XParam.blkwidth);
int ynode = int((blockyo_d[ib] - XParam.yo) / dxfac / XParam.blkwidth);
int oldright = rightblk[rightblk[ib]];
int oldtopofright = topblk[oldright];
int oldtop = topblk[topblk[ib]];
int oldrightoftop = rightblk[oldtop];
int oldleft = leftblk[ib];
int oldtopofleft = topblk[oldleft];
int oldbot = botblk[ib];
int oldrightofbot = rightblk[oldbot];
for (int iy = 0; iy < 16; iy++)
{
for (int ix = 0; ix < 16; ix++)
{
i = ix + iy * 16 + ib * XParam.blksize;
if (ix < 8 && iy < 8)
{
ii = ix * 2 + (iy * 2) * 16 + ib * XParam.blksize;
ir = (ix * 2 + 1) + (iy * 2) * 16 + ib * XParam.blksize;
it = (ix)* 2 + (iy * 2 + 1) * 16 + ib * XParam.blksize;
itr = (ix * 2 + 1) + (iy * 2 + 1) * 16 + ib * XParam.blksize;
}
if (ix >= 8 && iy < 8)
{
ii = ((ix - 8) * 2) + (iy * 2) * 16 + rightblk[ib] * XParam.blksize;
ir = ((ix - 8) * 2 + 1) + (iy * 2) * 16 + rightblk[ib] * XParam.blksize;
it = ((ix - 8)) * 2 + (iy * 2 + 1) * 16 + rightblk[ib] * XParam.blksize;
itr = ((ix - 8) * 2 + 1) + (iy * 2 + 1) * 16 + rightblk[ib] * XParam.blksize;
}
if (ix < 8 && iy >= 8)
{
ii = ix * 2 + ((iy - 8) * 2) * 16 + topblk[ib] * XParam.blksize;
ir = (ix * 2 + 1) + ((iy - 8) * 2) * 16 + topblk[ib] * XParam.blksize;
it = (ix)* 2 + ((iy - 8) * 2 + 1) * 16 + topblk[ib] * XParam.blksize;
itr = (ix * 2 + 1) + ((iy - 8) * 2 + 1) * 16 + topblk[ib] * XParam.blksize;
}
if (ix >= 8 && iy >= 8)
{
ii = (ix - 8) * 2 + ((iy - 8) * 2) * 16 + rightblk[topblk[ib]] * XParam.blksize;
ir = ((ix - 8) * 2 + 1) + ((iy - 8) * 2) * 16 + rightblk[topblk[ib]] * XParam.blksize;
it = (ix - 8) * 2 + ((iy - 8) * 2 + 1) * 16 + rightblk[topblk[ib]] * XParam.blksize;
itr = ((ix - 8) * 2 + 1) + ((iy - 8) * 2 + 1) * 16 + rightblk[topblk[ib]] * XParam.blksize;
}
// These are the only guys that need to be coarsen, other are recalculated on the fly or interpolated from forcing
hh[i] = 0.25*(hho[ii] + hho[ir] + hho[it] + hho[itr]);
zs[i] = 0.25*(zso[ii] + zso[ir] + zso[it] + zso[itr]);
uu[i] = 0.25*(uuo[ii] + uuo[ir] + uuo[it] + uuo[itr]);
vv[i] = 0.25*(vvo[ii] + vvo[ir] + vvo[it] + vvo[itr]);
//zb will be interpolated from input grid later // I wonder is this makes the bilinear interpolation scheme crash at the refining step for zb?
// No because zb is also interpolated later from the original mesh data
//zb[i] = 0.25 * (zbo[ii] + zbo[ir] + zbo[it], zbo[itr]);
}
}
//Need more?
// Make right, top and top-right block available for refine step
availblk[XParam.navailblk] = rightblk[ib];
availblk[XParam.navailblk+1] = topblk[ib];
availblk[XParam.navailblk+2] = rightblk[topblk[ib]];
newlevel[ib] = level[ib] - 1;
//Do not comment! Below is needed for the neighbours below (next step down) but then is not afterward
newlevel[rightblk[ib]] = level[ib] - 1;
newlevel[topblk[ib]] = level[ib] - 1;
newlevel[rightblk[topblk[ib]]] = level[ib] - 1;
// increment available block count
XParam.navailblk = XParam.navailblk + 3;
// Make right, top and top-right block inactive
activeblk[invactive[rightblk[ib]]] = -1;
activeblk[invactive[topblk[ib]]] = -1;
activeblk[invactive[rightblk[topblk[ib]]]] = -1;
//check neighbour's (Full neighbour happens below)
if (rightblk[ib] == oldright) // Sure that can never be true. if that was the case the coarsening would not have been allowed!
{
rightblk[ib] = ib;
}
else
{
rightblk[ib] = oldright;
}
if (topblk[ib] == oldtop)//Ditto here
{
topblk[ib] = ib;
}
else
{
topblk[ib] = oldtop;
}
// Bot and left blk should remain unchanged at this stage(they will change if the neighbour themselves change)
blockxo_d[ib] = blockxo_d[ib] + calcres(XParam.dx, level[ib] + 1);
blockyo_d[ib] = blockyo_d[ib] + calcres(XParam.dx, level[ib] + 1);
}
}
//____________________________________________________
//
// Step 3: deal with neighbour
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
int ib = activeblk[ibl];
int i, ii, ir, it, itr;
if (ib >= 0) // ib can be -1 for newly inactive blocks
{
if (newlevel[leftblk[ib]] < level[leftblk[ib]])
{
//left blk has coarsen
if (coarsen[leftblk[leftblk[ib]]])
{
leftblk[ib] = leftblk[leftblk[ib]];
}
else
{
leftblk[ib] = botblk[leftblk[leftblk[ib]]];
}
}
if (newlevel[botblk[ib]] < level[botblk[ib]])
{
// botblk has coarsen
if (coarsen[botblk[botblk[ib]]])
{
botblk[ib] = botblk[botblk[ib]];
}
else
{
botblk[ib] = leftblk[botblk[botblk[ib]]];
}
}
if (newlevel[rightblk[ib]] < level[rightblk[ib]])
{
// right block has coarsen
if (!coarsen[rightblk[ib]])
{
rightblk[ib] = botblk[rightblk[ib]];
}
// else do nothing because the right block is the reference one
}
if (newlevel[topblk[ib]] < level[topblk[ib]])
{
// top blk has coarsen
if (!coarsen[topblk[ib]])
{
topblk[ib] = leftblk[topblk[ib]];
}
}
}
}
//==========================================================================
// REFINE
//==========================================================================
// This is also a multi step process:
// 1. Interpolate conserved variables (although zb is done here it is overwritten later down the code)
// 2. Set direct neighbours blockxo/yo and levels
// 3. Set wider neighbourhood
// 4. Activate new blocks
//____________________________________________________
//
// Step 1. Interpolate conserved variables
int nblk = XParam.nblk;
for (int ibl = 0; ibl < XParam.nblk; ibl++)
{
//
int ib = activeblk[ibl];
int o, oo, ooo, oooo;
int i, ii, iii, iiii;
if (ib >= 0) // ib can be -1 for newly inactive blocks
{
if (refine[ib] == true)
{
double delx = calcres(XParam.dx, level[ib] + 1);
double xoblk = blockxo_d[ib] - 0.5 * delx;
double yoblk = blockyo_d[ib] - 0.5 * delx;
int oldtop, oldleft, oldright, oldbot;
oldtop = topblk[ib];
oldbot = botblk[ib];
oldright = rightblk[ib];
oldleft = leftblk[ib];
// Bilinear interpolation
for (int iy = 0; iy < 16; iy++)
{
for (int ix = 0; ix < 16; ix++)
{
int kx[] = { 0, 8, 0, 8 };
int ky[] = { 0, 0, 8, 8 };
int kb[] = { ib, availblk[csumblk[ib]], availblk[csumblk[ib] + 1], availblk[csumblk[ib] + 2] };
//double mx, my;
for (int kk = 0; kk < 4; kk++)
{
int cx, fx, cy, fy;
double h11, h12, h21, h22;
double zs11, zs12, zs21, zs22;
double u11, u12, u21, u22;
double v11, v12, v21, v22;
double lx, ly, rx, ry;
lx = ix * 0.5 - 0.25;
ly = iy * 0.5 - 0.25;
fx = max((int)floor(lx) + kx[kk], 0);
cx = min((int)ceil(lx) + kx[kk], 15);
fy = max((int)floor(ly) + ky[kk], 0);
cy = min((int)ceil(ly) + ky[kk], 15);
rx = (lx)+(double)kx[kk];
ry = (ly)+(double)ky[kk];
o = ix + iy * 16 + kb[kk] * XParam.blksize;
h11 = hho[fx + fy * 16 + ib * XParam.blksize];
h21 = hho[cx + fy * 16 + ib * XParam.blksize];
h12 = hho[fx + cy * 16 + ib * XParam.blksize];
h22 = hho[cx + cy * 16 + ib * XParam.blksize];
zs11 = zso[fx + fy * 16 + ib * XParam.blksize];
zs21 = zso[cx + fy * 16 + ib * XParam.blksize];
zs12 = zso[fx + cy * 16 + ib * XParam.blksize];
zs22 = zso[cx + cy * 16 + ib * XParam.blksize];
u11 = uuo[fx + fy * 16 + ib * XParam.blksize];
u21 = uuo[cx + fy * 16 + ib * XParam.blksize];
u12 = uuo[fx + cy * 16 + ib * XParam.blksize];
u22 = uuo[cx + cy * 16 + ib * XParam.blksize];
v11 = vvo[fx + fy * 16 + ib * XParam.blksize];
v21 = vvo[cx + fy * 16 + ib * XParam.blksize];
v12 = vvo[fx + cy * 16 + ib * XParam.blksize];
v22 = vvo[cx + cy * 16 + ib * XParam.blksize];
if (cy == 0)
{
h11 = BotAda(fx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, hho);
h21 = BotAda(cx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, hho);
zs11 = BotAda(fx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, zso);
zs21 = BotAda(cx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, zso);
u11 = BotAda(fx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, uuo);
u21 = BotAda(cx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, uuo);
v11 = BotAda(fx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, vvo);
v21 = BotAda(cx, cy, ib, botblk[ib], botblk[rightblk[ib]], botblk[leftblk[ib]], leftblk[botblk[ib]], rightblk[botblk[ib]], level, vvo);
}
if (fy >= 15)
{
h12 = TopAda(fx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, hho);
h22 = TopAda(cx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, hho);
zs12 = TopAda(fx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, zso);
zs22 = TopAda(cx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, zso);
u12 = TopAda(fx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, uuo);
u22 = TopAda(cx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, uuo);
v12 = TopAda(fx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, vvo);
v22 = TopAda(cx, fy, ib, topblk[ib], topblk[rightblk[ib]], topblk[leftblk[ib]], leftblk[topblk[ib]], rightblk[topblk[ib]], level, vvo);
}
if (cx == 0)
{
h12 = LeftAda(cx, cy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, hho);
h11 = LeftAda(cx, fy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, hho);
zs12 = LeftAda(cx, cy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, zso);
zs11 = LeftAda(cx, fy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, zso);
u12 = LeftAda(cx, cy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, uuo);
u11 = LeftAda(cx, fy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, uuo);
v12 = LeftAda(cx, cy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, vvo);
v11 = LeftAda(cx, fy, ib, leftblk[ib], leftblk[botblk[ib]], leftblk[topblk[ib]], botblk[leftblk[ib]], topblk[leftblk[ib]], level, vvo);
}
if (fx >= 15)
{
h22 = RightAda(fx, cy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, hho);
h21 = RightAda(fx, fy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, hho);
zs22 = RightAda(fx, cy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, zso);
zs21 = RightAda(fx, fy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, zso);
u22 = RightAda(fx, cy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, uuo);
u21 = RightAda(fx, fy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, uuo);
v22 = RightAda(fx, cy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, vvo);
v21 = RightAda(fx, fy, ib, rightblk[ib], rightblk[botblk[ib]], rightblk[topblk[ib]], botblk[rightblk[ib]], topblk[rightblk[ib]], level, vvo);
}
if (cy == 0)
{
fy = -1;
}
if (fy >= 15)
{
cy = 16;
}
if (cx == 0)
{
fx = -1;
}
if (fx >= 15)
{
cx = 16;
}
//printf("fx = %d; cx=%d; fy=%d; cy=%d; rx=%f; ry=%f\n", fx, cx, fy, cy,rx,ry);
//printf("First blk %f\n",BilinearInterpolation(h11, h12, h21, h22, fx, cx, fy, cy, rx, ry));
hh[o] = BilinearInterpolation(h11, h12, h21, h22, (double)fx, (double)cx, (double)fy, (double)cy, rx, ry);
zs[o] = BilinearInterpolation(zs11, zs12, zs21, zs22, (double)fx, (double)cx, (double)fy, (double)cy, rx, ry);
uu[o] = BilinearInterpolation(u11, u12, u21, u22, (double)fx, (double)cx, (double)fy, (double)cy, rx, ry);
vv[o] = BilinearInterpolation(v11, v12, v21, v22, (double)fx, (double)cx, (double)fy, (double)cy, rx, ry);
// There is still an issue in the corners when other block are finer resolution
if (fy == 15 && fx == 15)
{
if (level[topblk[ib]] > level[ib])
{
zs[o] = BotAda(15, 0, topblk[ib], ib, botblk[rightblk[topblk[ib]]], botblk[leftblk[topblk[ib]]], leftblk[botblk[topblk[ib]]], rightblk[botblk[topblk[ib]]], level, zso);
hh[o] = BotAda(15, 0, topblk[ib], ib, botblk[rightblk[topblk[ib]]], botblk[leftblk[topblk[ib]]], leftblk[botblk[topblk[ib]]], rightblk[botblk[topblk[ib]]], level, hho);
uu[o] = BotAda(15, 0, topblk[ib], ib, botblk[rightblk[topblk[ib]]], botblk[leftblk[topblk[ib]]], leftblk[botblk[topblk[ib]]], rightblk[botblk[topblk[ib]]], level, uuo);
vv[o] = BotAda(15, 0, topblk[ib], ib, botblk[rightblk[topblk[ib]]], botblk[leftblk[topblk[ib]]], leftblk[botblk[topblk[ib]]], rightblk[botblk[topblk[ib]]], level, vvo);
}
else if (level[rightblk[ib]] > level[ib])
{
zs[o] = LeftAda(0, 15, rightblk[ib], ib, leftblk[botblk[rightblk[ib]]], leftblk[topblk[rightblk[ib]]], botblk[leftblk[rightblk[ib]]], topblk[leftblk[rightblk[ib]]], level, zso);
hh[o] = LeftAda(0, 15, rightblk[ib], ib, leftblk[botblk[rightblk[ib]]], leftblk[topblk[rightblk[ib]]], botblk[leftblk[rightblk[ib]]], topblk[leftblk[rightblk[ib]]], level, hho);
uu[o] = LeftAda(0, 15, rightblk[ib], ib, leftblk[botblk[rightblk[ib]]], leftblk[topblk[rightblk[ib]]], botblk[leftblk[rightblk[ib]]], topblk[leftblk[rightblk[ib]]], level, uuo);
vv[o] = LeftAda(0, 15, rightblk[ib], ib, leftblk[botblk[rightblk[ib]]], leftblk[topblk[rightblk[ib]]], botblk[leftblk[rightblk[ib]]], topblk[leftblk[rightblk[ib]]], level, vvo);
}
else
{
//do nothing?
}
}
if (cy == 0 && cx == 0)
{
if (level[leftblk[ib]] > level[ib])
{
zs[o] = RightAda(15, 0, leftblk[ib], ib, rightblk[botblk[leftblk[ib]]], rightblk[topblk[leftblk[ib]]], botblk[rightblk[leftblk[ib]]], topblk[rightblk[leftblk[ib]]], level, zso);