forked from rurban/smhasher
-
Notifications
You must be signed in to change notification settings - Fork 10
/
crc32c.cpp
411 lines (375 loc) · 14 KB
/
crc32c.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
Copyright (c) 2013 - 2014 Mark Adler, Robert Vazan
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include "crc32c.h"
#define NOMINMAX
#include <windows.h>
#include <nmmintrin.h>
#include <stdio.h>
#include <random>
#include <algorithm>
typedef const uint8_t *buffer;
#include "generated-constants.cpp"
static uint32_t append_trivial(uint32_t crc, buffer input, size_t length)
{
for (size_t i = 0; i < length; ++i)
{
crc = crc ^ input[i];
for (int j = 0; j < 8; j++)
crc = (crc >> 1) ^ 0x80000000 ^ ((~crc & 1) * POLY);
}
return crc;
}
/* Table-driven software version as a fall-back. This is about 15 times slower
than using the hardware instructions. This assumes little-endian integers,
as is the case on Intel processors that the assembler code here is for. */
static uint32_t append_adler_table(uint32_t crci, buffer input, size_t length)
{
buffer next = input;
uint64_t crc;
crc = crci ^ 0xffffffff;
while (length && ((uintptr_t)next & 7) != 0)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
while (length >= 8)
{
crc ^= *(uint64_t *)next;
crc = table[7][crc & 0xff]
^ table[6][(crc >> 8) & 0xff]
^ table[5][(crc >> 16) & 0xff]
^ table[4][(crc >> 24) & 0xff]
^ table[3][(crc >> 32) & 0xff]
^ table[2][(crc >> 40) & 0xff]
^ table[1][(crc >> 48) & 0xff]
^ table[0][crc >> 56];
next += 8;
length -= 8;
}
while (length)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
return (uint32_t)crc ^ 0xffffffff;
}
/* Table-driven software version as a fall-back. This is about 15 times slower
than using the hardware instructions. This assumes little-endian integers,
as is the case on Intel processors that the assembler code here is for. */
static uint32_t append_table(uint32_t crci, buffer input, size_t length)
{
buffer next = input;
#ifdef _M_X64
uint64_t crc;
#else
uint32_t crc;
#endif
crc = crci ^ 0xffffffff;
#ifdef _M_X64
while (length && ((uintptr_t)next & 7) != 0)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
while (length >= 16)
{
crc ^= *(uint64_t *)next;
uint64_t high = *(uint64_t *)(next + 8);
crc = table[15][crc & 0xff]
^ table[14][(crc >> 8) & 0xff]
^ table[13][(crc >> 16) & 0xff]
^ table[12][(crc >> 24) & 0xff]
^ table[11][(crc >> 32) & 0xff]
^ table[10][(crc >> 40) & 0xff]
^ table[9][(crc >> 48) & 0xff]
^ table[8][crc >> 56]
^ table[7][high & 0xff]
^ table[6][(high >> 8) & 0xff]
^ table[5][(high >> 16) & 0xff]
^ table[4][(high >> 24) & 0xff]
^ table[3][(high >> 32) & 0xff]
^ table[2][(high >> 40) & 0xff]
^ table[1][(high >> 48) & 0xff]
^ table[0][high >> 56];
next += 16;
length -= 16;
}
#else
while (length && ((uintptr_t)next & 3) != 0)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
while (length >= 12)
{
crc ^= *(uint32_t *)next;
uint32_t high = *(uint32_t *)(next + 4);
uint32_t high2 = *(uint32_t *)(next + 8);
crc = table[11][crc & 0xff]
^ table[10][(crc >> 8) & 0xff]
^ table[9][(crc >> 16) & 0xff]
^ table[8][crc >> 24]
^ table[7][high & 0xff]
^ table[6][(high >> 8) & 0xff]
^ table[5][(high >> 16) & 0xff]
^ table[4][high >> 24]
^ table[3][high2 & 0xff]
^ table[2][(high2 >> 8) & 0xff]
^ table[1][(high2 >> 16) & 0xff]
^ table[0][high2 >> 24];
next += 12;
length -= 12;
}
#endif
while (length)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
return (uint32_t)crc ^ 0xffffffff;
}
/* Apply the zeros operator table to crc. */
static inline uint32_t shift_crc(uint32_t shift_table[][256], uint32_t crc)
{
return shift_table[0][crc & 0xff]
^ shift_table[1][(crc >> 8) & 0xff]
^ shift_table[2][(crc >> 16) & 0xff]
^ shift_table[3][crc >> 24];
}
/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t append_hw(uint32_t crc, buffer buf, size_t len)
{
buffer next = buf;
buffer end;
#ifdef _M_X64
uint64_t crc0, crc1, crc2; /* need to be 64 bits for crc32q */
#else
uint32_t crc0, crc1, crc2;
#endif
/* pre-process the crc */
crc0 = crc ^ 0xffffffff;
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
while (len && ((uintptr_t)next & 7) != 0)
{
crc0 = _mm_crc32_u8(static_cast<uint32_t>(crc0), *next);
++next;
--len;
}
#ifdef _M_X64
/* compute the crc on sets of LONG_SHIFT*3 bytes, executing three independent crc
instructions, each on LONG_SHIFT bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= 3 * LONG_SHIFT)
{
crc1 = 0;
crc2 = 0;
end = next + LONG_SHIFT;
do
{
crc0 = _mm_crc32_u64(crc0, *reinterpret_cast<const uint64_t *>(next));
crc1 = _mm_crc32_u64(crc1, *reinterpret_cast<const uint64_t *>(next + LONG_SHIFT));
crc2 = _mm_crc32_u64(crc2, *reinterpret_cast<const uint64_t *>(next + 2 * LONG_SHIFT));
next += 8;
} while (next < end);
crc0 = shift_crc(long_shifts, static_cast<uint32_t>(crc0)) ^ crc1;
crc0 = shift_crc(long_shifts, static_cast<uint32_t>(crc0)) ^ crc2;
next += 2 * LONG_SHIFT;
len -= 3 * LONG_SHIFT;
}
/* do the same thing, but now on SHORT_SHIFT*3 blocks for the remaining data less
than a LONG_SHIFT*3 block */
while (len >= 3 * SHORT_SHIFT)
{
crc1 = 0;
crc2 = 0;
end = next + SHORT_SHIFT;
do
{
crc0 = _mm_crc32_u64(crc0, *reinterpret_cast<const uint64_t *>(next));
crc1 = _mm_crc32_u64(crc1, *reinterpret_cast<const uint64_t *>(next + SHORT_SHIFT));
crc2 = _mm_crc32_u64(crc2, *reinterpret_cast<const uint64_t *>(next + 2 * SHORT_SHIFT));
next += 8;
} while (next < end);
crc0 = shift_crc(short_shifts, static_cast<uint32_t>(crc0)) ^ crc1;
crc0 = shift_crc(short_shifts, static_cast<uint32_t>(crc0)) ^ crc2;
next += 2 * SHORT_SHIFT;
len -= 3 * SHORT_SHIFT;
}
/* compute the crc on the remaining eight-byte units less than a SHORT_SHIFT*3
block */
end = next + (len - (len & 7));
while (next < end)
{
crc0 = _mm_crc32_u64(crc0, *reinterpret_cast<const uint64_t *>(next));
next += 8;
}
#else
/* compute the crc on sets of LONG_SHIFT*3 bytes, executing three independent crc
instructions, each on LONG_SHIFT bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= 3 * LONG_SHIFT)
{
crc1 = 0;
crc2 = 0;
end = next + LONG_SHIFT;
do
{
crc0 = _mm_crc32_u32(crc0, *reinterpret_cast<const uint32_t *>(next));
crc1 = _mm_crc32_u32(crc1, *reinterpret_cast<const uint32_t *>(next + LONG_SHIFT));
crc2 = _mm_crc32_u32(crc2, *reinterpret_cast<const uint32_t *>(next + 2 * LONG_SHIFT));
next += 4;
} while (next < end);
crc0 = shift_crc(long_shifts, static_cast<uint32_t>(crc0)) ^ crc1;
crc0 = shift_crc(long_shifts, static_cast<uint32_t>(crc0)) ^ crc2;
next += 2 * LONG_SHIFT;
len -= 3 * LONG_SHIFT;
}
/* do the same thing, but now on SHORT_SHIFT*3 blocks for the remaining data less
than a LONG_SHIFT*3 block */
while (len >= 3 * SHORT_SHIFT)
{
crc1 = 0;
crc2 = 0;
end = next + SHORT_SHIFT;
do
{
crc0 = _mm_crc32_u32(crc0, *reinterpret_cast<const uint32_t *>(next));
crc1 = _mm_crc32_u32(crc1, *reinterpret_cast<const uint32_t *>(next + SHORT_SHIFT));
crc2 = _mm_crc32_u32(crc2, *reinterpret_cast<const uint32_t *>(next + 2 * SHORT_SHIFT));
next += 4;
} while (next < end);
crc0 = shift_crc(short_shifts, static_cast<uint32_t>(crc0)) ^ crc1;
crc0 = shift_crc(short_shifts, static_cast<uint32_t>(crc0)) ^ crc2;
next += 2 * SHORT_SHIFT;
len -= 3 * SHORT_SHIFT;
}
/* compute the crc on the remaining eight-byte units less than a SHORT_SHIFT*3
block */
end = next + (len - (len & 7));
while (next < end)
{
crc0 = _mm_crc32_u32(crc0, *reinterpret_cast<const uint32_t *>(next));
next += 4;
}
#endif
len &= 7;
/* compute the crc for up to seven trailing bytes */
while (len)
{
crc0 = _mm_crc32_u8(static_cast<uint32_t>(crc0), *next);
++next;
--len;
}
/* return a post-processed crc */
return static_cast<uint32_t>(crc0) ^ 0xffffffff;
}
static bool detect_hw()
{
int info[4];
__cpuid(info, 1);
return (info[2] & (1 << 20)) != 0;
}
static bool hw_available = detect_hw();
extern "C" CRC32C_API uint32_t crc32c_append(uint32_t crc, buffer input, size_t length)
{
if (hw_available)
return append_hw(crc, input, length);
else
return append_table(crc, input, length);
}
#define TEST_BUFFER 65536
#define TEST_SLICES 1000000
static int benchmark(const char *name, uint32_t(*function)(uint32_t, buffer, size_t), buffer input, int *offsets, int *lengths, uint32_t *crcs)
{
uint64_t startTime = GetTickCount64();
int slice = 0;
uint64_t totalBytes = 0;
bool first = true;
int iterations = 0;
uint32_t crc = 0;
while (GetTickCount64() - startTime < 1000)
{
crc = function(crc, input + offsets[slice], lengths[slice]);
totalBytes += lengths[slice];
if (first)
crcs[slice] = crc;
++slice;
++iterations;
if (slice == TEST_SLICES)
{
slice = 0;
first = false;
}
}
int time = static_cast<int>(GetTickCount64() - startTime);
double throughput = totalBytes * 1000.0 / time;
printf("%s: ", name);
if (throughput > 1024.0 * 1024.0 * 1024.0)
printf("%.1f GB/s\n", throughput / 1024 / 1024 / 1024);
else
printf("%.0f MB/s\n", throughput / 1024 / 1024);
return std::min(TEST_SLICES, iterations);
}
static void compare_crcs(const char *leftName, uint32_t *left, const char *rightName, uint32_t *right, int count)
{
for (int i = 0; i < count; ++i)
if (left[i] != right[i])
{
printf("CRC mismatch between algorithms %s and %s at offset %d: %x vs %x\n", leftName, rightName, i, left[i], right[i]);
exit(1);
}
}
extern "C" CRC32C_API void crc32c_unittest()
{
std::random_device rd;
std::uniform_int_distribution<int> byteDist(0, 255);
uint8_t *input = new uint8_t[TEST_BUFFER];
for (int i = 0; i < TEST_BUFFER; ++i)
input[i] = byteDist(rd);
int *offsets = new int[TEST_SLICES];
int *lengths = new int[TEST_SLICES];
std::uniform_int_distribution<int> lengthDist(0, TEST_BUFFER);
for (int i = 0; i < TEST_SLICES; ++i)
{
lengths[i] = lengthDist(rd);
std::uniform_int_distribution<int> offsetDist(0, TEST_BUFFER - lengths[i]);
offsets[i] = offsetDist(rd);
}
uint32_t *crcsTrivial = new uint32_t[TEST_SLICES];
uint32_t *crcsAdlerTable = new uint32_t[TEST_SLICES];
uint32_t *crcsTable = new uint32_t[TEST_SLICES];
uint32_t *crcsHw = new uint32_t[TEST_SLICES];
int iterationsTrivial = benchmark("trivial", append_trivial, input, offsets, lengths, crcsTrivial);
int iterationsAdlerTable = benchmark("adler_table", append_adler_table, input, offsets, lengths, crcsAdlerTable);
compare_crcs("trivial", crcsTrivial, "adler_table", crcsAdlerTable, std::min(iterationsTrivial, iterationsAdlerTable));
int iterationsTable = benchmark("table", append_table, input, offsets, lengths, crcsTable);
compare_crcs("adler_table", crcsAdlerTable, "table", crcsTable, std::min(iterationsAdlerTable, iterationsTable));
if (hw_available)
{
int iterationsHw = benchmark("hw", append_hw, input, offsets, lengths, crcsHw);
compare_crcs("table", crcsTable, "hw", crcsHw, std::min(iterationsTable, iterationsHw));
}
else
printf("HW doesn't have crc instruction\n");
benchmark("auto", crc32c_append, input, offsets, lengths, crcsHw);
}