forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12_2_hello_rnn.py
85 lines (66 loc) · 2.46 KB
/
12_2_hello_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Lab 12 RNN
import sys
import torch
import torch.nn as nn
from torch.autograd import Variable
torch.manual_seed(777) # reproducibility
# 0 1 2 3 4
idx2char = ['h', 'i', 'e', 'l', 'o']
# Teach hihell -> ihello
x_data = [0, 1, 0, 2, 3, 3] # hihell
one_hot_lookup = [[1, 0, 0, 0, 0], # 0
[0, 1, 0, 0, 0], # 1
[0, 0, 1, 0, 0], # 2
[0, 0, 0, 1, 0], # 3
[0, 0, 0, 0, 1]] # 4
y_data = [1, 0, 2, 3, 3, 4] # ihello
x_one_hot = [one_hot_lookup[x] for x in x_data]
# As we have one batch of samples, we will change them to variables only once
inputs = Variable(torch.Tensor(x_one_hot))
labels = Variable(torch.LongTensor(y_data))
num_classes = 5
input_size = 5 # one-hot size
hidden_size = 5 # output from the RNN. 5 to directly predict one-hot
batch_size = 1 # one sentence
sequence_length = 1 # One by one
num_layers = 1 # one-layer rnn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.rnn = nn.RNN(input_size=input_size,
hidden_size=hidden_size, batch_first=True)
def forward(self, hidden, x):
# Reshape input (batch first)
x = x.view(batch_size, sequence_length, input_size)
# Propagate input through RNN
# Input: (batch, seq_len, input_size)
# hidden: (num_layers * num_directions, batch, hidden_size)
out, hidden = self.rnn(x, hidden)
return hidden, out.view(-1, num_classes)
def init_hidden(self):
# Initialize hidden and cell states
# (num_layers * num_directions, batch, hidden_size)
return Variable(torch.zeros(num_layers, batch_size, hidden_size))
# Instantiate RNN model
model = Model()
print(model)
# Set loss and optimizer function
# CrossEntropyLoss = LogSoftmax + NLLLoss
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
# Train the model
for epoch in range(100):
optimizer.zero_grad()
loss = 0
hidden = model.init_hidden()
sys.stdout.write("predicted string: ")
for input, label in zip(inputs, labels):
# print(input.size(), label.size())
hidden, output = model(hidden, input)
val, idx = output.max(1)
sys.stdout.write(idx2char[idx.data[0]])
loss += criterion(output, label)
print(", epoch: %d, loss: %1.3f" % (epoch + 1, loss.data[0]))
loss.backward()
optimizer.step()
print("Learning finished!")