forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvnextv2-tiny_8xb256-coslr-300e_in1k.py
122 lines (112 loc) · 3.12 KB
/
convnextv2-tiny_8xb256-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
_base_ = [
'../../_base_/datasets/imagenet_bs64_swin_224.py',
'../../_base_/default_runtime.py',
]
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='NumpyToPIL', to_rgb=True),
dict(
type='torchvision/TrivialAugmentWide',
num_magnitude_bins=31,
interpolation='bicubic',
fill=None),
dict(type='PILToNumpy', to_bgr=True),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackInputs'),
]
train_dataloader = dict(
dataset=dict(pipeline=train_pipeline),
sampler=dict(type='RepeatAugSampler', shuffle=True),
)
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='tiny',
drop_path_rate=0.1,
layer_scale_init_value=0.,
use_grn=True,
init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.')),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
init_cfg=dict(type='TruncNormal', layer='Linear', std=.02, bias=0.),
),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0),
]),
)
custom_hooks = [
dict(
type='EMAHook',
momentum=1e-4,
evaluate_on_origin=True,
priority='ABOVE_NORMAL')
]
# schedule settings
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='AdamW', lr=3.2e-3, betas=(0.9, 0.999), weight_decay=0.05),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(
layer_decay_rate=0.7,
norm_decay_mult=0.0,
bias_decay_mult=0.0,
flat_decay_mult=0.0))
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=20,
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=280,
eta_min=1.0e-5,
by_epoch=True,
begin=20,
end=300)
]
train_cfg = dict(by_epoch=True, max_epochs=300)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(
# only keeps the latest 2 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=2))
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)