forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
119 lines (111 loc) · 3.35 KB
/
beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
_base_ = [
'../_base_/datasets/imagenet_bs256_beitv2.py',
'../_base_/default_runtime.py',
]
# model settings
vqkd_encoder = dict(
arch='base',
img_size=224,
patch_size=16,
in_channels=3,
out_indices=-1,
drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=True,
out_type='featmap',
with_cls_token=True,
frozen_stages=-1,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
layer_scale_init_value=0.,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
init_cfg=None)
layer_scale_init_value = 0.1
drop_path_rate = 0. # 0. for 300 epochs and 0.1 for 1600 epochs.
model = dict(
type='BEiT',
backbone=dict(
type='BEiTPretrainViT',
arch='base',
patch_size=16,
out_indices=[-4, -1],
drop_path_rate=drop_path_rate,
final_norm=False,
out_type='raw',
layer_scale_init_value=layer_scale_init_value,
init_cfg=[
dict(type='TruncNormal', std=0.02, layer='Linear'),
dict(type='TruncNormal', std=0.02, layer='Conv2d'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
]),
neck=dict(
type='BEiTV2Neck',
num_layers=2,
early_layers=9,
backbone_arch='base',
drop_path_rate=drop_path_rate,
layer_scale_init_value=layer_scale_init_value,
),
head=dict(
type='BEiTV2Head',
embed_dims=768,
num_embed=8192,
loss=dict(type='CrossEntropyLoss')),
target_generator=dict(
type='VQKD',
encoder_config=vqkd_encoder,
init_cfg=dict(
type='Pretrained',
checkpoint= # noqa
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/vqkd_encoder.pth' # noqa
)))
# optimizer wrapper
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
# betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
optimizer=dict(
type='AdamW', lr=1.5e-3, betas=(0.9, 0.98), weight_decay=0.05),
clip_grad=dict(max_norm=3.0),
paramwise_cfg=dict(
custom_keys={
# the following configurations are designed for BEiT
'.ln': dict(decay_mult=0.0),
'.bias': dict(decay_mult=0.0),
'q_bias': dict(decay_mult=0.0),
'v_bias': dict(decay_mult=0.0),
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.gamma': dict(decay_mult=0.0),
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
eta_min=1e-5,
by_epoch=True,
begin=10,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
find_unused_parameters = True
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)