-
Notifications
You must be signed in to change notification settings - Fork 0
/
03-parts.Rmd
526 lines (463 loc) · 29.2 KB
/
03-parts.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# Examples {#exemple}
## Inverse closed Banach \*-algebras from topological partial actions {#restrix}
We introduce now certain partial crossed product $C^*$-algebras
associated to partial topological actions of the discrete group. We do
not consider the most general case; in particular, we restrict
generality in such a way to have certain natural faithful Hilbert space
representations. In this way, transparent results on inverse closedness
will be available.
So let $(X,\Theta,\textsf{G})$ be a *partial action* of the group $\textsf{G}$ (assumed
here to be countable) on the compact Hausdorff space $X$. In more
detail, the partial action is denoted by
$\big\{\Theta_g:X_{g^{-1}}\!\to X_g\,\big\vert\, g\in\textsf{G}\big\}$ , where
each $X_g$ is an open subset of $X$ and $\Theta_g$ is a homeomorphism
with domain $X_{g^{-1}}$ and image $X_g$ . One requires
- $X_\textsf{e}=X$ and $\Theta_\textsf{e}=\textrm{id}_X$ ,
- for every $g,h\in\textsf{G}$ , the homeomorphism $\Theta_{gh}$ extends
$\Theta_{g}\circ\Theta_{h}$.
Observe that the composition $\Theta_g\circ\Theta_h$ is meant to refer
to the map whose domain is the set of all elements $x \in X$ for which
$\Theta_g\circ\Theta_h(x)$ is well defined, therefore the domain of
$\Theta_g\circ\Theta_h$ is the set $\Theta_h^{-1}( X_h\cap X_{g^{-1}})$.
In fact each locally compact partial dynamical system may be deduced by
restricting a global one in an essentially canonical way: there exists a
global action $\tau$ of the group $G$ on a topological space $\tilde{X}$
such that
$$X_g=\tau_g(\tilde{X})\cap \tilde{X} \quad \quad \forall g\in G$$ and
$\tau_g|_{X_{g^{-1}}}=\Theta_g$ [@Ex2 Ch. 3]. But this restriction of
the global action might fail in the case the total space $\tilde X$ is
not Hausdorff ([@Ex2 Prop. 5.6] and [@Ab Th. 4.44]).
We obtain from $(X,\Theta,\textsf{G})$ a partial $C^*$-dynamical system
$\big(C(X),\theta,\textsf{G}\big)$ , where the ideals are $$\label{santodomingo}
\mathcal A_g\!:=C\big(X_{g}\big)\equiv\big\{a\in C(X)\,\big\vert\,a(x)=0\,,\,\forall\,x\notin X_{g}\big\}$$
and the isomorphisms are $$\label{panama}
\theta_g:C\big(X_{g^{-1}}\big)\to C\big(X_{g}\big)\,,\quad\theta_g(a):=a\circ\Theta_{g^{-1}}\,.$$
Therefore, one can construct the Banach $^*$-algebra
$\ell^1_\theta\big(\textsf{G};C(X)\big)$ and its enveloping partial crossed product
$C(X)\!\rightthreetimes_\theta\!\textsf{G}$ . We deduce from Theorem (\@ref(thm:teoremix))
::: {.proposition #corolix}
If $\,{\textsf{G}}$ is rigidly symmetric, $\ell^1_\theta\big({\textsf{G}},C(X)\big)$ is reduced,
symmetric and inverse closed in the partial crossed product.
:::
Assume now that under the partial action there is an open dense orbit
$Y$ with trivial isotropy. Thus, for some (and then any) $y\in Y$ one
has $$\label{guadelupa}
\textsf{G}(y):=\big\{g\in\textsf{G}\,\big\vert\,y\in X_{g^{-1}}\,,\Theta_g(y)=y\big\}=\{\textsf{e}\}\,.$$
Then $X$ will be a compactification of the discrete orbit $Y$ and for
any $y\in Y$ the orbit map $g\to\Theta_g(y)$ will be a homeomorphism on
its image.
In the Hilbert space $\ell^2\big(Y\big)$ we introduce the representation
by multiplication operators $$\label{mexic}
\pi:C(X)\to\mathbb B\big[\ell^2(Y)\big]\,,\quad\big[\pi(a)\xi\big](y):=a(y)\xi(y)\,.$$
For any $h\in\textsf{G}\,,\,y\in Y$ and $\xi\in\ell^2(Y)$ one defines
$$\label{partilix}
\big[u_h(\xi)\big](y):=
\begin{cases}
\xi\big(\Theta_{h^{-1}}(y)\big) &\textrm{if}\ \;y\in X_h\,,\\
0\, &\textrm{if}\ \;y\notin X_h\,.
\end{cases}$$ Then $\big(\pi,u,\ell^2(Y)\big)$ *is a covariant
representation of* $\big(C(X),\theta,\textsf{G}\big)$ and *the integrated form
representation*
$$\Pi\equiv\pi\!\rightthreetimes u\!:C(X)\!\rightthreetimes_\theta\!\textsf{G}\to\mathbb B\big[\ell^2(Y)\big]\,,$$
which acts on $\ell^1_\theta\big(\textsf{G};C(X)\big)$ as
$\Pi(\Phi)=\sum_{h\in\textsf{G}}\pi\big[\Phi(h)\big]u_h$ and which satisfies
\begin{equation}
\Pi\big(a\otimes\delta_h\big)=\pi(a)u_h\,,\quad\forall\,h\in\textsf{G}\,,\,a\in C(X_h)\,.(\#eq:lemikainnen)
\end{equation}
To express it explicitly, we need some notations. For $y,z\in Y$ we set
$g_{yz}$ for the unique element of the group such that
$\Theta_{g_{yz}}(y)=z$ ; we use the fact that $Y$ is an orbit with
trivial isotropy. Note the relations
\begin{equation}
g_{yz}^{-1}=g_{zy}\,,\quad g_{zy}=g_{xy}g_{zx}\,,\quad\forall\,x,y,z\in Y. (\#eq:dominicana)
\end{equation}
A direct computation, relying on (\@ref(eq:dominicana)), shows that on $\ell^1_\theta\big(\textsf{G};C(X)\big)$ the
representation $\Pi$ reads
\begin{equation}
\big[\Pi(\Phi)\xi\big](y)=\sum_{z\in Y}\Phi\big(g_{zy},y\big)\xi(z)\,, (\#eq:flochax)
\end{equation}
where we set $\big[\Phi(k)\big](y)=:\Phi(k,y)$ .
::: {.theorem #pohjola}
Suppose that ${\textsf{G}}$ is countable and rigidly symmetric and that $Y$ is a open dense orbit of the space
$X$, with trivial isotropy. Let
$\Phi\in\ell^1_\theta\big({\textsf{G}};C(X)\big)$ .
(i). If the operator $\,\Pi(\Phi)$ is invertible, there exists $\Psi\in\ell^1_\theta\big({\textsf{G}};C(X)\big)$ such that $\Pi(\Phi)^{-1}\!=\Pi(\Psi)$ .
(ii). If $\,\Pi(\Phi)$ is Fredholm, at least one of its inverses $T$
modulo $\mathbb K\big[\ell^2(Y)\big]$ belongs to
$\Pi[\ell^1_{\theta}\big({\textsf{G}};C(X)\big)]$ .
:::
::: proof
(i). Having in view Proposition (\@ref(prp:corolix)), we only need to check that the representation $\Pi$ is faithful; see also Theorem (\@ref(thm:teoremix))(iv). The universal and the reduced partial crossed products here are the same, cf. Remark (\@ref(cnj:lantors)). Note that the restriction of $\Pi$ to $C(X)$ coincides with $\pi$ (set $h=\textsf{e}$ in (\@ref(eq:lemikainnen)). By [@ELQ Th. 2.6], injectivity of $\Pi$ would
follow if we prove that $\pi$ is injective and the action is topologically free. The injectivity of $\pi$ is obvious: $\pi(a)=0$ means that the restriction of $a$ to $Y$ is null, which implies that $a$ is null, since the orbit $Y$ was supposed dense. Topological freeness (cf. [@ELQ Def. 2.1.]) is clear, since $Y$ is dense: having trivial isotropy, it is disjoint from any set of the form
$$F_g:=\big\{x\in X_{g^{-1}}\,\big\vert\,\Theta_g(x)=x\big\}\,,\quad g\ne\textsf{e}\,,$$
so this one must have empty interior.
(ii). Since $Y$ is discrete, the elements of $C_0(Y)$ are transformed by the representation $\pi$ into compact multiplication operators in $\ell^2(Y)$ . The $\theta$-invariant ideal $C_0(Y)$ gives rise to the ideal
$C_0(Y)\!\rightthreetimes_\theta\!\textsf{G}$ of the partial crossed product $C(X)\!\rightthreetimes_\theta\!\textsf{G}$ and one has $\Pi\big[C_0(Y)\!\rightthreetimes_\theta\!\textsf{G}\big]=\mathbb K\big[\ell^2(Y)\big]$ .
Therefore one can apply Corollary (\@ref(cor:honduras)) and conclude that
$\Pi[\ell^1_{\theta}\big(\textsf{G};C(X)\big)]\subset\mathbb B\big[\ell^2(Y)\big]$
is Fredholm inverse closed. Then the assertion follows easily from Atkinson's Theorem; see also Example (\@ref(exm:fredholmix)).
:::
## Toeplitz-Bunce-Deddens operators {#dedenix}
In the Hilbert space $\ell^2(\mathbb{N})$ , with canonical orthonormal base
$\{\delta_n\}_{n\in\mathbb{N}}$ , each function $a\in\ell^\infty(\mathbb{N})$ defines a
bounded multiplication operator $\textsf{M}_a$ . Let us denote by
$\textsf{S}$ the right shift uniquely determined by
$\textsf{S}\,\delta_n\!:=\delta_{n+1}$ for every $n\in\mathbb{N}$ . For
$q\in\mathbb{N}$ , we say that $a\in\ell^\infty(\mathbb{N})$ is $q$-periodic if
$a(n+q)=a(n)\,,\,\forall\,n\in\mathbb{N}$ . We denote by $\ell^\infty(\mathbb{N};q)$ the
$C^*$-subalgebra of all $q$-periodic functions. The starting point in
constructing a Toeplitz-Bunce-Deddens algebra is an infinite family
$\mathbf q:=\{q_i\!\mid\!i\in\mathbb{N}\}$ of strictly increasing positive
integers such that each $q_i$ divides $q_{i+1}$ , i.e. $q_{i+1}=r_i q_i$
with $r_i\ge 2$ .
::: {.definition #buncix}
*The Toeplitz-Bunce-Deddens algebra $\mathfrak D(\mathbf q)$ associated to the multi-integer $\mathbf q$* is
the $C^*$-algebras of operators in $\ell^2(\mathbb{N})$ generated by the family
\begin{equation}
\Big\{\textsf{ S}_a:=\textsf{ S}\textsf{ M}_a\,\Big\vert\,a\in\bigcup_{i\in\mathbb{N}}\ell^\infty(\mathbb{N};q_i)\Big\}\,. (\#eq:generatrix)
\end{equation}
:::
::: {.proposition #propotrix}
The Toeplitz-Bunce-Deddens algebra is topologically graded over $\mathbb{Z}$ . Its $\ell^1$-Banach $^*$-algebra
$\ell^1\big[\mathfrak D(\mathbf q)\big]$ is reduced, symmetric and
inverse closed in $\mathfrak D(\mathbf q)$ and in
$\mathbb B\big[\ell^2(\mathbb{N})\big]$ (an explicit description is included in
the proof).
:::
::: proof
By [@Exs1], a canonical action $\alpha$ of the torus
$\mathbb{T}=\widehat{\mathbb{Z}}$ on $\mathfrak D(\mathbf q)$ is defined as
follows: For every $z\in\mathbb T$ the unitary multiplication operator
determined by $U_z\delta_n:=z^n\delta_n$ ($n\in\mathbb{N}$) defines on
$\mathbb B\big[\ell^2(\mathbb{N})\big]$ the inner automorphism
$T\to U_z TU_z^*$. Because of
\begin{equation}
\alpha_z(S_a)=U_z S_aU_z^*=zS_a\,,\quad\forall\,a\in\ell^\infty(\mathbb{N})\,, (eq:costarica)
\end{equation}
$\big(\mathfrak D(\mathbf q),\alpha,\mathbb{T}\big)$ is indeed a (full)
continuous action. We also write $\ell^\infty(\mathbb{N};\mathbf q)$ for the
(unital, Abelian) $C^*$-subalgebra of $\ell^\infty(\mathbb{N})$ generated by
$\bigcup_{i\in\mathbb{N}}\ell^\infty(\mathbb{N};q_i)$ . The spectral subspace
$\mathfrak D(\mathbf q)_k$ is generated by operators of the ordered form
\begin{equation}
S_{a_1}\dots S_{a_n}S^*_{b_1}\dots S^*_{b_m}\,,\quad a_1,\dots,a_n,b_1,\dots,b_m\in\ell^\infty(\mathbb{N};\mathbf q)\,,\ n-m=k\,. (\#eq:paracetamol)
\end{equation}
This follows easily from the relations $S^*_a S_b=M_{\overline ab}$ and
$M_a S_b=S_{\tilde ab}$ , where $\tilde a_n:=a_{n-1}$ if $n\ge 1$ .
Since $\tilde a_0$ does not appear in the definition of the weighted
shift operator, it can be fixed such that $\tilde a$ is periodic. Other
forms of the elements in $\mathfrak D(\mathbf q)_k$ could involve the
final projection $Q:=SS^*$. These having been settled, the assertions
concerning the $\ell^1$-Banach algebra follow from Theorem (\@ref(thm:exelix)).
:::
::: {.conjecture #toeplix}
In [@Exs1] one gets the isomorphism
\begin{equation}
\mathfrak D(\mathbf q)\overset{\sim}{\longrightarrow}\big[c_0(\mathbb{N})\oplus\ell^\infty(\mathbb{N};\mathbf q)\big]\!\rightthreetimes_\theta\mathbb{Z}\cong C\big[\mathbb{N}(\mathbf q)\big]\!\rightthreetimes_\theta\mathbb{Z}\,. (\#eq:triplix)
\end{equation}
We refer to [@Exs1] for the Gelfand spectrum
$\mathbb{N}(\mathbf q)=\mathbb{N}\sqcup\Sigma(\mathbf q)$ of the Abelian $\alpha$-fixed
point $C^*$-algebra
$$\mathfrak D(\mathbf q)_0\!:=c_0(\mathbb{N})\oplus\ell^\infty(\mathbb{N};\mathbf q)$$
(a compactification of the discrete set $\mathbb{N}$ by a Cantor set
$\Sigma(\mathbf q)$) and for the interesting explicit form of the partial
action $\theta$ in the Gelfand realization (induced by a partial
homeomorphism of $\mathbb{N}(\mathbf q)$).
:::
We may also state that
*$\ell^1\big[\mathfrak D(\mathbf q)\big]=\bigoplus_{k\in\mathbb{Z}}^{1,\alpha}\mathfrak D(\mathbf q)_k$
is Fredholm inverse closed in*
$\mathfrak D(\mathbf q)\subset\mathbb B\big[\ell^2(\mathbb{N})\big]$ . This
follows from Corollary (\@ref(cor:honduras)), where $\mathbb{K}=c_0(\mathbb{N})$ and $\Pi$ is the inverse of
the isomorphism appearing in (\@ref(eq:triplix)),
since
$\Pi\big[c_0(\mathbb{N})\!\rightthreetimes_\theta\!\mathbb{Z}\big]=\mathbb K\big[\ell^2(\mathbb{N})\big]$ . One
calls the quotient
\begin{equation}
\mathfrak D(\mathbf q)/\mathbb K\big[\ell^2(\mathbb{N})\big]\cong\ell^\infty(\mathbb{N};\mathbf q)\!\rtimes_\theta\mathbb{Z}\cong C\big[\Sigma(\mathbf q)\big]\!\rtimes_\theta\mathbb{Z} (\#eq:triflix)
\end{equation}
*the Bunce-Deddens algebra*. The action \"at infinity\" of $\mathbb{Z}$ on the
Cantor set $\Sigma(\mathbf q)$ is induced by an odometer map. It is a
global action, so this quotient can be dealt with by usual crossed
products.
## UHF algebras {#afelliz}
*An UHF-algebra* is the inductive limit
$$\label{limindiz}
\mathfrak C:=\underset{m\in\mathbb{N}}{\textrm{lim} \,\textrm{ind}\,\mathbf M^{p_m}}
$$
of
a sequence of full matricial $C^*$-algebras, with unital and injective
connecting morphisms, where each $p_m$ divides $p_{m+1}$. In [@Exs2]
Exel treated general approximately finite algebras. He defined on
$\mathfrak C$ a regular and semi-saturated $\mathbb T$-action and then
he applied his theory from [@Exs] to get an isomorphism between
$\mathfrak C$ and a partial crossed product $\mathcal{A}\rightthreetimes_\theta\mathbb{Z}$ , where $\mathcal{A}$
is an Abelian almost finite $AF$-algebra. To simplify, we decided to
treat only UHF algebras; the general case is similar, but it would
involve more complicated notations. To state a result on symmetric
subalgebras, we make use of Theorem (\@ref(thm:exelix)), only
invoking the circle action and its spectral subspaces; the partial
crossed product will not be mentioned.
On every full matrix algebra $\mathbf M^p$ one defines $$\label{inerix}
\alpha^p:\mathbb T\to\textrm{ Aut}\big(\mathbf M^p\big)\,,\quad\alpha^p_z\big[(c_{ij})_{i,j}\big]=\big(z^{i-j}c_{ij}\big)_{i,j}\,.$$
The connecting morphisms
$\big\{\mu^{m}\!:\!\mathbf M^{p_m}\to\mathbf M^{p_{m+1}}\big\}$ are
covariant with respect to the actions $\big\{\alpha^{p_m}\big\}$. The
inductive limit comes with the canonical monomorphisms
$\big\{\nu^{m}\!:\mathbf M^{p_m}\!\to\mathfrak C\big\}$ and
$\bigcup_m\nu^{(m)}\!\big(\mathbf M^{p_m}\big)$ is dense in
$\mathfrak C$ . For every $z\in\mathbb T\,,m\in\mathbb{N}$ and
$\Phi\in\mathbf M^{p_m}$ we set $$\label{tetaniz}
\alpha_z\big[\nu^{m}(\Phi)\big]:=\nu^{m}\big[\alpha^{p_m}_z(\Phi)\big]\,.$$
It is shown in [@Exs2 Sect. 2] that $\alpha$ extends to an action on
$\mathfrak C$ (which is semi-saturated and regular).
To make Theorem (\@ref(thm:exelix)) concrete, one needs the spectral subspaces. For each
$|k|\le p$ , let us denote by $\mathbf M^p_k$ the vector subspace of
$p\!\times\!p$-matrices with non-empty entries only on the $k'$th
diagonal ($c_{ij}=0$ if $i-j\ne k$). If $|k|>p$ , we set simply
$\mathbf M^p_k\!:=\{0\}$ . Then $\mathbf M^p_k$ is the $k'$th spectral
subspace of the action $\alpha^p$. It is follows from the definitions
and from the fact that each canonical morphism $\nu^{m}$ is injective
that the spectral subspaces of the action $\alpha$ are the closures in
$\mathfrak C$ of the unions over $m$ of the images through $\nu^{m}$ of
the subspaces $\mathbf M^{p_m}_k$.
::: {.theorem #cioflix}
The Banach $^*$-algebra $$\label{perru}
\ell^1(\mathfrak C)=\bigoplus^{1,\alpha}_{k\in\mathbb{N}}\overline{\bigcup_{m\in\mathbb{Z}}\nu^{m}\big(\mathbf M^{p_m}_k\big)}$$
is reduced, symmetric and inverse closed in $\mathfrak C$ .
:::
::: {.conjecture #takesix}
In [@Ta] Takesaki (see also [@FD2 VIII.17])
provided an approach to UHF algebras which would lead to a different
grading, and consequently also to a symmetric $\ell^1$-type Banach
$^*$-algebra, this time over the infinite restricted product
$\textsf{G}:=\prod^\prime_{m\in\mathbb{N}}\textsf{G}_m$ with the discrete topology, where each
$\textsf{G}_m$ is a cyclic group of a certain order $q_m$ . Actually, the UHF
algebra $\mathfrak C$ is isomorphic to an infinite tensor product
$\otimes_m\mathbf M^{q_m}$, where $q_m:=p_{m+1}/p_m$ . In its turn, this
one is shown to be isomorphic to the full crossed product
$C(\widehat{\textsf{G}}\,)\!\rtimes\textsf{G}$ . The dual $\widehat{\textsf{G}}$ can be identified with the product group $\prod_{m\in\mathbb{N}}\textsf{G}_m$ .
:::
## CAR algebras {#afellix}
Let $\big(\mathcal R,(\cdot|\cdot)\big)$ be an infinitely dimensional
separable Hilbert space and $a:\mathcal R\to\mathbb B(\mathcal H)$ *a
representation of the canonical anticommutation relations* in the
Hilbert space $\mathcal{H}$ , generating the unital $C^*$-algebra
$\textrm{ CCR}(\mathcal R)\subset\mathbb B(\mathcal H)$ . Thus $a$ is
lineal and for every $r,s\in\mathcal R$ one has $$\label{anticom}
a(r)a(s)+a(s)a(r)=0\,,\quad a^*(r)a(s)+a^*(s)a(r)=(r|s)\,.$$ It is known
that $\textrm{ CCR}(\mathcal R)$ is isomorphic to the UHF algebra
$\mathbf M(2^\infty):=\underset{m\in\mathbb{N}}{\textrm{ lim\,ind}\,\mathbf M^{2^m}}$
as well as with the infinite tensor product
$\bigotimes_{m\in\mathbb{N}}\mathbf M^2$.
Let also $V:\widehat{\textsf{G}}\to\mathbb B(\mathcal R)$ be a strongly continuous
unitary representation of the compact Abelian group $\widehat{\textsf{G}}$ . Associated
to $V$ there is a continuous action
$\upsilon:\widehat{\textsf{G}}\to\textrm{ Aut}\big[\textrm{ CCR}(\mathcal R)\big]$ ,
uniquely defined on generators by $$\label{creatrix}
\upsilon_\chi\big[a(r)\big]=a\big[V_\chi(r)\big]\,,\quad\forall\,r\in\mathcal R\,,\,\chi\in\widehat{\textsf{G}}\,.$$
We denote by $\textsf{G}$ the dual of $\widehat{\textsf{G}}$ ; it is a discrete Abelian group. We
already have the grading $$\label{carnatix}
\textrm{ CCR}(\mathcal R)=\widetilde\bigoplus_{g\in\textsf{G}}\textrm{ CCR}(\mathcal R)^{\upsilon}_g$$
in terms of spectral subspaces of the action $\upsilon$ . The next
corollary follows directly from Theorem (\@ref(thm:teoremix)).
Note the generality: any representation $\big(\widehat{\textsf{G}},V\big)$ provides a
result.
::: {.corollary #spermioni}
The corresponding $\ell^1$-algebra
\begin{equation}
\ell^1\big(\textrm{CCR}(\mathcal R)\big)=\bigoplus_{g\in{\textsf{G}}}^{1,\upsilon}\textrm{ CCR}(\mathcal R)^{\upsilon}_g (\#eq:sperioni)
\end{equation}
is symmetric and inverse closed in $\textrm{ CCR}(\mathcal R)$ and in
$\mathbb B(\mathcal H)$.
:::
It is clear that $a(r)\in\textrm{ CCR}(\mathcal R)^{\upsilon}_g$ if and
only if $r\in\mathcal R^V_g$, meaning by definition that
$V_\chi(r)=\chi(g)r$ for all $\chi\in\widehat{\textsf{G}}$ . Similarly,
$a^*(r)\in\textrm{ CCR}(\mathcal R)^{\upsilon}_g$ if and only if
$r\in\mathcal R^V_{g^{-1}}$ .
::: {.example #sfarnak}
If $V:\mathbb{T}\to\mathbb B(\mathcal R)$ is given
by $V_\tau(r):=e^{2\pi i\tau}r$ and the group duality is implemented by
$\tau(k):=e^{2\pi ik\tau}$ ($k\in\mathbb{Z}$) , then
$\mathcal R^V_1=\mathcal R$ , while $\mathcal R^V_k=\{0\}$ for any
$k\ne 1$ . Thus $a(r)\in\textrm{ CCR}(\mathcal R)^{\upsilon}_1$ and
$a^*(r)\in\textrm{ CCR}(\mathcal R)^{\upsilon}_{-1}$ , from which it
follows that $$\label{followix}
a^*(r_1)\dots a^*(r_n)a(s_1)\dots a(s_m)\in\textrm{ CCR}(\mathcal R)^{\upsilon}_{m-n}\,,\quad\forall\,r_1,\dots,r_n,s_1,\dots s_m\in\mathcal R\,.$$
:::
## Wiener-Hopf algebras associated to quasi-lattice ordered groups {#quasilatix}
One can treat this subject by using partial crossed products, as in
Subsection \@ref(cerculix), due to results from [@QR; @ELQ; @Ex2]. We found
it easier for our purposes to use the initial article [@Ni], combined
with Theorem (\@ref(thm:teoremix)).
We fix a sub-monoid $\textsf{P}$ of a discrete amenable group $\textsf{G}$ such that
$\textsf{P}\cap\textsf{P}^{-1}=\{\textsf{e}\}$ . One defines a left-invariant order relation
in $\textsf{G}$ by $g\leq h$ iff $g^{-1}h\in \textsf{P}$. The ordered group $(\textsf{G},\textsf{P})$
is *quasi-lattice ordered* if any $g\in\textsf{P}\textsf{P}^{-1}$ has a least upper
bound in $\textsf{P}$. Many examples may be found at [@Ni pag.23].
Consider the Hilbert space $\ell^2(\textsf{P})$ with its usual orthonormal
basis $\{e_q\}_{q\in\textsf{P}}$. For $p\in\textsf{P}$, consider the bounded linear
operator $W_p\in \mathbb{B}(\ell^2(\textsf{P}))$ defined by
$$W_p(e_q)=e_{pq}\,,\quad\forall\,q\in\textsf{P}.$$ We refer to $W$ as the
*regular semigroup of isometries* of $\textsf{P}$. The $C^*$-algebra of
operators on $\ell^2(\textsf{P})$ generated by the range of $W$ is called the
*Wiener-Hopf algebra of $\,\textsf{P}$* is denoted by $\mathfrak{W}(\textsf{P})$ .
For every $g\in\textsf{P}\textsf{P}^{-1}$ we define the closed subspace
$$\mathfrak{W}(\textsf{P})_g:=\overline{\textrm{span}}\,\big\{W_p W_q^*\,\big\vert\,pq^{-1}\!=g\big\}$$
and set $\mathfrak{W}(\textsf{P})_g=\{0\}$ if $g\notin \textsf{P}\textsf{P}^{-1}$. A
characterization of the Abelian $C^*$-subalgebra $\mathfrak{W}(\textsf{P})_\textsf{e}$
is
$$\mathfrak{W}(\textsf{P})_\textsf{e} =\left\{T\in\mathfrak{W}(\textsf{P})\!\mid\! T \textrm{ has a diagonal matrix relatively to the canonical basis of }\ell^2(\textsf{P})\right\}.$$
In Section 3 of Nica's paper [@Ni] it is shown that that *the collection
$\big\{\mathfrak{W}(\textsf{P})_g\,\big\vert\,g\in\textsf{G}\big\}$ provides a
topologically graded structure of the Wiener-Hopf algebra*. We can apply
now Theorem (\@ref(thm:teoremix)) and get
::: {.corollary #mimishor}
The Banach $^*$-algebra
$\ell^1\Big( \widehat{\bigoplus}_{g\in{\textsf{G}}}\,\mathfrak{W}({\textsf{P}})_g \Big)$
is symmetric and inverse closed in
$\mathbb B\big[\ell^2({\textsf{P}})\big]$ .
:::
::: {.conjecture #spresfarsit}
Suppose that ${\textsf{P}}$ is finitely generated (a slightly more general assumption is possible).
Then $\ell^1\Big( \widehat{\bigoplus}_{g\in{\textsf{G}}}\,\mathfrak{W}({\textsf{P}})_g \Big)$
*is also Fredholm inverse closed*. We only sketch a proof. As in
[@QR; @ELQ; @Ex2], one has an isomorphism
$\mathfrak W({\textsf{P}})\cong\mathfrak W({\textsf{P}})_\textsf{e}\rightthreetimes_\theta{\textsf{G}}$
for a certain partial action $\theta$ of ${\textsf{G}}$ on the diagonal
Abelian algebra. This one is induced from a (Bernoulli-type) partial
topological action $\Theta$ on its Gelfand spectrum $\Omega_\textsf{e}$ , which
is a compactification of the monoid ${\textsf{P}}$. This
compactification is regular (${\textsf{P}}$ is an *open* dense
orbit) under the stated hypothesis on ${\textsf{P}}$. It is shown in
[@Ni 6.3] that this regularity is equivalent with the fact that the
ideal of all compact operators, identified with
$C({\textsf{P}})\rightthreetimes_\theta{\textsf{G}}$ , is contained in
$\mathfrak W({\textsf{P}})\,.$ Then the result follows easily from
our Corollary (\@ref(cor:honduras)).
:::
## Higher rank graph algebras {#oroflix}
In this subsection we are going to use constructions from [@KP] and [@Ra].
::: {.definition #hix}
*A $\textrm{ k}$-graph* ( *higher rank graph*) is a countable category $\Lambda$ endowed with a functor
$\textrm{l}:\Lambda\to\mathbb{N}^\textrm{ k}$ ( *the degree functor*) satisfying
the *factorization property*: For every $\lambda\in\Lambda$ such that
$\textrm{ l}(\lambda)=\mathfrak m+\mathfrak n$ , there exist unique
elements $\mu,\nu\in\Lambda$ such that $\textrm{l}(\mu)=\mathfrak m$ ,
$\textrm{l}(\nu)=\mathfrak n$ and $\lambda=\mu\nu$ .
:::
If $\textrm{ k}=1$ , one identifies a $1$-graph with the path category
$E^*\!:=\bigsqcup_{n\in\mathbb{N}}E^n$ of a directed graph
$\big(s,r:E^1\to E^0\big)$ and $\textrm{ l}(\lambda)$ is the usual
length of a path $\lambda:=e_1\dots e_{\textrm{ l}(\lambda)}$ .
Accordingly, for the $\textrm{ k}$-graph
$\big(\textrm{ l}:\Lambda\to\mathbb{N}^\textrm{ k}\big)$ , one denotes by
$\textsf{s},\textsf{r}:\Lambda\to\Lambda^0\equiv\textrm{ Obj}(\Lambda)$ the source and
the range map in the category. One has the decomposition
$$\Lambda=\bigsqcup_{\mathfrak n\in\mathbb{N}^\textrm{ k}}\Lambda^{\mathfrak n}\equiv\bigsqcup_{\mathfrak n\in\mathbb{N}^\textrm{ k}}\textrm{ l}^{-1}(\mathfrak n)\,.$$
For elements from the object set $\Lambda^0$ (called *vertices*) one
prefers notations as $v,w$ . We also set set
$\Lambda^{\mathfrak n}(v):=\Lambda^{\mathfrak n}\cap\textrm{ r}^{-1}(v)$
(\"paths\" of \"length\" $\mathfrak n\in\mathbb{N}^\textrm{ k}$ ending in
$v\in\Lambda^0$ ).
::: {.definition #admisibilix}
One says that the $\textrm{ k}$-graph is *admissible* if every $\Lambda^{\mathfrak n}(v)$
is finite (raw-finite $\textrm{ k}$-graph) and non-void (no sources) and
$\Lambda^0$ is finite (insuring that the $C^*$-algebra below is unital,
with unit $\sum_{v\in\Lambda^0}\textsf{ S}_v$).
:::
::: {.definition #cstarix}
Let $\Lambda\overset{\textrm{ l}}{\longrightarrow}\mathbb{N}^\textrm{ k}$ be an
admissible $\textrm{ k}$-graph. *A Cuntz-Krieger $\Lambda$-family* is a
set $\{\textsf{ T}_\lambda\!\mid\!\lambda\in\Lambda\}$ of partial
isometries in a $C^*$-algebra $\mathfrak D$ such that
1. the elements $\big\{\textsf{ T}_v\!\mid\!v\in\Lambda^0\big\}$ are
mutually orthogonal projections,
2. if $\textrm{ s}(\lambda)=\textrm{ r}(\mu)$ , then
$\textsf{ T}_\lambda\textsf{ T}_\mu=\textsf{ T}_{\lambda\mu}$ ,
3. $\textsf{ T}^*_\lambda\textsf{ T}_\lambda=\textsf{ T}_{\textrm{ s}(\lambda)}$
for every $\lambda\in\Lambda$ ,
4. $\textsf{ T}_v=\sum_{\lambda\in\Lambda^{\mathfrak n}(v)}\textsf{ T}_\lambda\textsf{ T}^*_\lambda$
for every $v\in\Lambda^0$ and $\mathfrak n\in\mathbb{N}^\textrm{ k}$.
We define $C^*(\Lambda,\textrm{ l})\equiv\mathfrak C(\Lambda)$ to be the
universal $C^*$-algebra generated by a Cuntz-Krieger $\Lambda$-family
$\{\textsf{ S}_\lambda\!\mid\!\lambda\in\Lambda\}$ . Universality means
that for every Cuntz-Krieger $\Lambda$-family
$\{\textsf{ T}_\lambda\!\mid\!\lambda\in\Lambda\}\subset\mathfrak D$ ,
there exists a unique $C^*$-morphism
$\pi_\textsf{ T}:\mathfrak C(\Lambda)\to\mathfrak D$ such that
$\pi_\textsf{ T}(\textsf{ S}_\lambda)=\textsf{ T}_\lambda$ for every
$\lambda$ .
:::
We identify now families of symmetric Banach $^*$-algebras, starting
with functors $\textsf{ F}:\Lambda\to\textsf{G}$ , where $\textsf{G}$ is supposed to be
a discrete Abelian group. One particular case is $\textsf{G}=\mathbb{N}^\textrm{ k}$ and
$\textsf{ F}=\textrm{ l}$ , but many others are possible. For every
$g\in\textsf{G}$ one sets $$\label{bebex}
\mathfrak{C}(\Lambda)_g:=\overline{\textrm{ span}}\big\{\textsf{ S}_\lambda\textsf{ S}^*_{\mu}\,{\big\vert\,\textsf{ F}}(\lambda)\textsf{ F}(\mu)^{-1}=g\big\}\,.$$
It turns out that these are spectral subspaces of a dual action
$\alpha^\textsf{ F}:\widehat{\textsf{G}}\to\textrm{ Aut}\big[\mathfrak C(\Lambda)\big]$ ,
uniquely determined (use the universal property of
$\mathfrak C(\Lambda)$) by
$$\alpha^\textsf{ F}_\chi(\textsf{ S}_\lambda)=\chi\big[\textsf{ F}(\lambda)\big]\textsf{ S}_\lambda\,,\quad\forall\,\lambda\in\Lambda\,,\,\chi\in\widehat{\textsf{G}}\,.$$
Applying Theorem (\@ref(thm:exelix)) one gets
::: {.corollary #ix}
Let $\Lambda\overset{\textrm{ l}}{\longrightarrow}\mathbb{N}^\textrm{ k}$ be an
admissible $\textrm{ k}$-graph and $\textsf{ F}:\Lambda\to\textsf{G}$ a functor
with values in an Abelian discrete group. Then
$$\ell^1\big(\mathfrak C(\Lambda)\big):=\bigoplus_{g\in\textsf{G}}^{1,\alpha^{\textsf{F}}}\,\overline{\textrm{ span}}\big\{\textsf{ S}_\lambda\textsf{ S}^*_\mu\,{\big\vert\,\textsf{F}}(\lambda)\textsf{ F}(\mu)^{-1}=g\big\}$$
is a reduced and symmetric Banach $^*$-algebra, which is inverse closed
in $\mathfrak C(\Lambda)$ .
:::
::: {.definition #aperiodix}
On $\mathbb{N}^\textsf{ k}$ one considers the order $\mathfrak m\le\mathfrak n\,\Leftrightarrow\,\mathfrak m_i\le\mathfrak n_i\,,\forall\,i$ .
Let $\Lambda\overset{\textrm{ l}}{\longrightarrow}\mathbb{N}^\textrm{ k}$ be an
admissible $\textrm{ k}$-graph.
1. We say that $\rho$ is *a minimal common extension* of
$\mu,\nu\in\Lambda$ , and we write $\rho\in\textrm{ MCE}(\mu,\nu)$ ,
if $\textrm{ l}(\rho)=\max\{\textrm{ l}(\mu),\textrm{ l}(\nu)\}$ and
$\rho=\mu\mu'=\nu\nu'$ for some $\mu',\nu'\in\Lambda$ .
2. The $\textsf{ k}$-graph is called *aperiodic* if for every
$\mu,\nu\in\Lambda$ with $\textrm{ s}(\mu)=\textrm{ s}(\nu)$ there
exists $\lambda\in\Lambda$ with
$\textrm{ r}(\lambda)=\textrm{ s}(\mu)$ and
$\textrm{ MCE}(\mu\lambda,\nu\lambda)=\emptyset$ .
:::
The two notions are easier to visualize for $\textsf{ k}=1$ . In this
case, for instance, $\textrm{ MCE}(\mu,\nu)$ is either void, or a
singleton (one of the two elements) and aperiodicity boils down to
condition (L).
::: {.proposition #perdrix}
Let $\Lambda\overset{\textrm{ l}}{\longrightarrow}\mathbb{N}^\textrm{ k}$ be an
admissible and aperiodic $\textrm{ k}$-graph and
$\textsf{ F}:\Lambda\to{\textsf{G}}$ a functor with values in an
Abelian discrete group. Let
$\{\textsf{ T}_\lambda\!\mid\!\lambda\in\Lambda\}$ be a Cuntz-Krieger
$\Lambda$-family of partial isometries in the Hilbert space $\mathcal{H}$ such
that $\textsf{ T}_v\ne 0$ for every $v\in\Lambda^0$. Then (the quite
obvious action $\beta^\textsf{ F}$ is explained in the proof)
\begin{equation}
\bigoplus_{g\in{\textsf{G}}}^{1,\beta^{\textsf{ F}}}\,\overline{\textrm{ span}}\big\{\textsf{ T}_\lambda\textsf{ T}^*_{\mu}\,{\big\vert\,\textsf{ F}}(\lambda)\textsf{ F}(\mu)^{-1}\!=g\big\} (\#eq:fujimori)
\end{equation}
is inverse closed in $\mathbb B(\mathcal{H})$ .
:::
::: proof
Under the stated assumptions, \"the Cuntz-Krieger unicity
theorem\" (see [@KP; @Si] for example) states that the unique
representation $\pi_\textsf{ T}:\mathfrak C(\Lambda)\to\mathbb B(\mathcal{H})$
satisfying
$$\pi_{\textsf{T}}(\textsf{ S}_{\lambda})=\textsf{ T}_{\lambda}\,,\quad\forall\lambda\in\Lambda$$
(provided by the universal property) is injective. We denote by
$\mathfrak C(\textsf{ T})$ its range, so that $\mathfrak C(\Lambda)$ and
$\mathfrak C(\textsf{ T})$ are isomorphic. Theorem (\@ref(thm:teoremix)) states then that
$\pi_\textsf{ T}\Big[\ell^1\big(\mathfrak C(\Lambda)\big)\Big]$ is
inverse closed in $\mathfrak C(\textsf{ T})$ and in $\mathbb B(\mathcal{H})$ .
There is an action
$\beta^\textsf{ F}\!:\widehat{\textsf{G}}\to\textrm{ Aut}\big[\mathfrak C(\textsf{ T})\big]$
such that
$$\beta^\textsf{ F}_\chi(\textsf{ T}_\lambda)=\chi[\textsf{ F}(\lambda)]\textsf{ T}_\lambda\,,\quad\forall\,\chi\in\widehat{\textsf{G}}\,,\,\lambda\in\Lambda$$
and $\pi_T$ intertwines the two actions. It follows that
$\pi_\textsf{ T}\Big[\ell^1\big(\mathfrak C(\Lambda)\big)\Big]$
coincides with (\@ref(eq:fujimori)).
:::