forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_nrtr_mtb.py
47 lines (43 loc) · 1.75 KB
/
rec_nrtr_mtb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import nn
import paddle
class MTB(nn.Layer):
def __init__(self, cnn_num, in_channels):
super(MTB, self).__init__()
self.block = nn.Sequential()
self.out_channels = in_channels
self.cnn_num = cnn_num
if self.cnn_num == 2:
for i in range(self.cnn_num):
self.block.add_sublayer(
"conv_{}".format(i),
nn.Conv2D(
in_channels=in_channels if i == 0 else 32 * (2 ** (i - 1)),
out_channels=32 * (2**i),
kernel_size=3,
stride=2,
padding=1,
),
)
self.block.add_sublayer("relu_{}".format(i), nn.ReLU())
self.block.add_sublayer("bn_{}".format(i), nn.BatchNorm2D(32 * (2**i)))
def forward(self, images):
x = self.block(images)
if self.cnn_num == 2:
# (b, w, h, c)
x = paddle.transpose(x, [0, 3, 2, 1])
x_shape = x.shape
x = paddle.reshape(x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
return x