forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_scale_sampler.py
171 lines (154 loc) · 6.43 KB
/
multi_scale_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from paddle.io import Sampler
import paddle.distributed as dist
import numpy as np
import random
import math
class MultiScaleSampler(Sampler):
def __init__(
self,
data_source,
scales,
first_bs=128,
fix_bs=True,
divided_factor=[8, 16],
is_training=True,
ratio_wh=0.8,
max_w=480.0,
seed=None,
):
"""
multi scale samper
Args:
data_source(dataset)
scales(list): several scales for image resolution
first_bs(int): batch size for the first scale in scales
divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
is_training(boolean): mode
"""
# min. and max. spatial dimensions
self.data_source = data_source
self.data_idx_order_list = np.array(data_source.data_idx_order_list)
self.ds_width = data_source.ds_width
self.seed = data_source.seed
if self.ds_width:
self.wh_ratio = data_source.wh_ratio
self.wh_ratio_sort = data_source.wh_ratio_sort
self.n_data_samples = len(self.data_source)
self.ratio_wh = ratio_wh
self.max_w = max_w
if isinstance(scales[0], list):
width_dims = [i[0] for i in scales]
height_dims = [i[1] for i in scales]
elif isinstance(scales[0], int):
width_dims = scales
height_dims = scales
base_im_w = width_dims[0]
base_im_h = height_dims[0]
base_batch_size = first_bs
# Get the GPU and node related information
num_replicas = dist.get_world_size()
rank = dist.get_rank()
# adjust the total samples to avoid batch dropping
num_samples_per_replica = int(self.n_data_samples * 1.0 / num_replicas)
img_indices = [idx for idx in range(self.n_data_samples)]
self.shuffle = False
if is_training:
# compute the spatial dimensions and corresponding batch size
# ImageNet models down-sample images by a factor of 32.
# Ensure that width and height dimensions are multiples are multiple of 32.
width_dims = [
int((w // divided_factor[0]) * divided_factor[0]) for w in width_dims
]
height_dims = [
int((h // divided_factor[1]) * divided_factor[1]) for h in height_dims
]
img_batch_pairs = list()
base_elements = base_im_w * base_im_h * base_batch_size
for h, w in zip(height_dims, width_dims):
if fix_bs:
batch_size = base_batch_size
else:
batch_size = int(max(1, (base_elements / (h * w))))
img_batch_pairs.append((w, h, batch_size))
self.img_batch_pairs = img_batch_pairs
self.shuffle = True
else:
self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
self.img_indices = img_indices
self.n_samples_per_replica = num_samples_per_replica
self.epoch = 0
self.rank = rank
self.num_replicas = num_replicas
self.batch_list = []
self.current = 0
last_index = num_samples_per_replica * num_replicas
indices_rank_i = self.img_indices[self.rank : last_index : self.num_replicas]
while self.current < self.n_samples_per_replica:
for curr_w, curr_h, curr_bsz in self.img_batch_pairs:
end_index = min(self.current + curr_bsz, self.n_samples_per_replica)
batch_ids = indices_rank_i[self.current : end_index]
n_batch_samples = len(batch_ids)
if n_batch_samples != curr_bsz:
batch_ids += indices_rank_i[: (curr_bsz - n_batch_samples)]
self.current += curr_bsz
if len(batch_ids) > 0:
batch = [curr_w, curr_h, len(batch_ids)]
self.batch_list.append(batch)
random.shuffle(self.batch_list)
self.length = len(self.batch_list)
self.batchs_in_one_epoch = self.iter()
self.batchs_in_one_epoch_id = [i for i in range(len(self.batchs_in_one_epoch))]
def __iter__(self):
if self.seed is None:
random.seed(self.epoch)
self.epoch += 1
else:
random.seed(self.seed)
random.shuffle(self.batchs_in_one_epoch_id)
for batch_tuple_id in self.batchs_in_one_epoch_id:
yield self.batchs_in_one_epoch[batch_tuple_id]
def iter(self):
if self.shuffle:
if self.seed is not None:
random.seed(self.seed)
else:
random.seed(self.epoch)
if not self.ds_width:
random.shuffle(self.img_indices)
random.shuffle(self.img_batch_pairs)
indices_rank_i = self.img_indices[
self.rank : len(self.img_indices) : self.num_replicas
]
else:
indices_rank_i = self.img_indices[
self.rank : len(self.img_indices) : self.num_replicas
]
start_index = 0
batchs_in_one_epoch = []
for batch_tuple in self.batch_list:
curr_w, curr_h, curr_bsz = batch_tuple
end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
batch_ids = indices_rank_i[start_index:end_index]
n_batch_samples = len(batch_ids)
if n_batch_samples != curr_bsz:
batch_ids += indices_rank_i[: (curr_bsz - n_batch_samples)]
start_index += curr_bsz
if len(batch_ids) > 0:
if self.ds_width:
wh_ratio_current = self.wh_ratio[self.wh_ratio_sort[batch_ids]]
ratio_current = wh_ratio_current.mean()
ratio_current = (
ratio_current
if ratio_current * curr_h < self.max_w
else self.max_w / curr_h
)
else:
ratio_current = None
batch = [(curr_w, curr_h, b_id, ratio_current) for b_id in batch_ids]
# yield batch
batchs_in_one_epoch.append(batch)
return batchs_in_one_epoch
def set_epoch(self, epoch: int):
self.epoch = epoch
def __len__(self):
return self.length