- 1. Introduction
- 2. Environment
- 3. Model Training / Evaluation / Prediction
- 4. Inference and Deployment
- 5. FAQ
Paper:
Scene Text Recognition with Permuted Autoregressive Sequence Models Darwin Bautista, Rowel Atienza ECCV, 2021
Using real datasets (real) and synthetic datsets (synth) for training respectively,and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets.
- The real datasets include COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR and OpenVINO datasets.
- The synthesis datasets include MJSynth and SynthText datasets.
the algorithm reproduction effect is as follows:
Training Dataset | Model | Backbone | config | Acc | Download link |
---|---|---|---|---|---|
Synth | ParseQ | VIT | rec_vit_parseq.yml | 91.24% | train model |
Real | ParseQ | VIT | rec_vit_parseq.yml | 94.74% | train model |
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.
Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
Evaluation:
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
Prediction:
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
First, the model saved during the SAR text recognition training process is converted into an inference model. ( Model download link ), you can use the following command to convert:
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
For SAR text recognition model inference, the following commands can be executed:
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
Not supported
Not supported
Not supported
@InProceedings{bautista2022parseq,
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
author={Bautista, Darwin and Atienza, Rowel},
booktitle={European Conference on Computer Vision},
pages={178--196},
month={10},
year={2022},
publisher={Springer Nature Switzerland},
address={Cham},
doi={10.1007/978-3-031-19815-1_11},
url={https://doi.org/10.1007/978-3-031-19815-1_11}
}