Skip to content

Latest commit

 

History

History
124 lines (91 loc) · 4.14 KB

algorithm_rec_parseq.md

File metadata and controls

124 lines (91 loc) · 4.14 KB

ParseQ

1. 算法简介

论文信息:

Scene Text Recognition with Permuted Autoregressive Sequence Models Darwin Bautista, Rowel Atienza ECCV, 2021

原论文分别使用真实文本识别数据集(Real)和合成文本识别数据集(Synth)进行训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估。 其中:

  • 真实文本识别数据集(Real)包含COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR, OpenVINO数据集
  • 合成文本识别数据集(Synth)包含MJSynth和SynthText数据集

在不同数据集上训练的算法的复现效果如下:

数据集 模型 骨干网络 配置文件 Acc 下载链接
Synth ParseQ VIT rec_vit_parseq.yml 91.24% 训练模型
Real ParseQ VIT rec_vit_parseq.yml 94.74% 训练模型

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

请参考文本识别教程。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要更换配置文件即可。

训练

具体地,在完成数据准备后,便可以启动训练,训练命令如下:

#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_vit_parseq.yml

评估

# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy

预测:

# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png

4. 推理部署

4.1 Python推理

首先将ParseQ文本识别训练过程中保存的模型,转换成inference model。( 模型下载地址 ),可以使用如下命令进行转换:

python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq

ParseQ文本识别模型推理,可以执行如下命令:

python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False

4.2 C++推理

由于C++预处理后处理还未支持ParseQ,所以暂未支持

4.3 Serving服务化部署

暂不支持

4.4 更多推理部署

暂不支持

5. FAQ

引用

@InProceedings{bautista2022parseq,
  title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
  author={Bautista, Darwin and Atienza, Rowel},
  booktitle={European Conference on Computer Vision},
  pages={178--196},
  month={10},
  year={2022},
  publisher={Springer Nature Switzerland},
  address={Cham},
  doi={10.1007/978-3-031-19815-1_11},
  url={https://doi.org/10.1007/978-3-031-19815-1_11}
}