-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDGMMC_ESC.py
125 lines (89 loc) · 5.14 KB
/
DGMMC_ESC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import numpy as np
import pandas as pd
import math
import torch
import torch.optim as optim
from torch.utils.data import random_split
from src.Datasets import ESC50Dataset
from utils_DGMMC import DGMMClassifier, train_from_features_PCA, test_from_features_PCA, get_means_bandwidth_from_features, CrossEntropy
from utils import get_trained_PCA
if __name__ == "__main__":
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print('Code running on :', device)
P = range(5, 105, 5)
G = [1]
folders = [1,2,3,4,5]
classes = 50
batch_size = 64
nb_epochs = 30
EXPERIMENT_PATH = os.path.join('experiments_no_whitening', 'ESC')
FEATURES_ABOSLUTE_PATH = os.path.join('/home/jeremy/Documents/Datasets/ESC50', 'features')
for i in folders:
folder_path = os.path.join(EXPERIMENT_PATH, 'fold_{}'.format(i))
SDGM_folder_path = os.path.join(folder_path, 'DGMMC')
if os.path.isdir(SDGM_folder_path) is False:
os.mkdir(SDGM_folder_path)
results_path = os.path.join(SDGM_folder_path, 'results')
if os.path.isdir(results_path) is False:
os.mkdir(results_path)
models_path = os.path.join(SDGM_folder_path, 'models')
if os.path.isdir(models_path) is False:
os.mkdir(models_path)
trainset = ESC50Dataset(FEATURES_ABOSLUTE_PATH, os.path.join(folder_path, 'train_data.csv'))
train_ds, val_ds = random_split(trainset, [math.floor(0.90*len(trainset)), len(trainset) - math.floor(0.90*len(trainset))])
trainloader = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory = True)
valloader = torch.utils.data.DataLoader(val_ds, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory = True)
testset = ESC50Dataset(FEATURES_ABOSLUTE_PATH, os.path.join(folder_path, 'test_data.csv'))
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory = True)
pca = get_trained_PCA(trainloader, 1024, whiten=False)
for p in P:
for g in G:
cumsum = np.cumsum(pca.explained_variance_ratio_)
if p != 100:
d = np.argmax(cumsum >= p/100) + 1
else:
d = 1024
print(d)
init_means, init_stds = get_means_bandwidth_from_features(classes, trainloader, pca, d)
model = DGMMClassifier(d,classes,g, init_means)
model.to(device)
criterion = CrossEntropy()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, nesterov=True)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=nb_epochs, eta_min=1e-4)
best_loss = math.inf
model_path = os.path.join(models_path, 'model_P_{}_G_{}.pt'.format(p, g))
tr = []
val = []
for epoch in range(nb_epochs):
model, train_loss, train_acc = train_from_features_PCA(classes, device, model, trainloader, criterion, optimizer, pca, d)
tr.append(np.hstack((train_loss, train_acc)))
val_loss, val_acc = test_from_features_PCA(classes, device, model, valloader, criterion, pca, d)
val.append(np.hstack((val_loss, val_acc)))
print("[Epoch {}/{}] tr_loss: {:.4f} -- tr_acc: {:.3f} -- val_loss: {:.4f} -- val_acc: {:.3f}".format(epoch, nb_epochs, train_loss, train_acc, val_loss, val_acc))
if val_loss < best_loss:
torch.save(model, model_path)
best_loss = val_loss
scheduler.step()
best_model = torch.load(model_path)
best_model.eval()
best_model.to(device)
test_loss, test_acc = test_from_features_PCA(classes, device, best_model, testloader, criterion, pca, d)
print("Test: test_loss: {:.5f} -- test_acc: {:.3f}".format(test_loss, test_acc))
# Save results
tr = np.stack(tr, axis=0)
df_tr = pd.DataFrame(tr, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'train_P_{}_G_{}.csv'.format(p, g))
df_tr.to_csv(fpath, sep=';')
val = np.stack(val, axis=0)
df_val = pd.DataFrame(val, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'val_P_{}_G_{}.csv'.format(p, g))
df_val.to_csv(fpath, sep=';')
te = np.vstack((test_loss, test_acc)).transpose()
df_test = pd.DataFrame(te, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'test_P_{}_G_{}.csv'.format(p, g))
df_test.to_csv(fpath, sep=';')
feat_infos = np.vstack((p/100, d)).transpose()
df_feat_info = pd.DataFrame(feat_infos, columns=['P', 'Features_kept'])
fpath = os.path.join(results_path, 'Features_P_{}_G_{}.csv'.format(p, g))
df_feat_info.to_csv(fpath, sep=';')