-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
332 lines (271 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os, random, torch, pickle
import numpy as np
import glob as gb
import torch.utils.data as Data
import torch.nn.functional as F
from torch import nn
from sklearn import metrics
from imblearn.under_sampling import RandomUnderSampler
seed = 10086
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class GlobalMaxPool1d(nn.Module):
"""global max pooling"""
def __init__(self):
super(GlobalMaxPool1d, self).__init__()
def forward(self, x):
# x shape: (batch_size, channel, seq_len)
# return shape: (batch_size, channel, 1)
return F.max_pool1d(x, kernel_size=x.shape[2])
class TextCNN(nn.Module):
"""conv->relu->pool->dropout->linear->sigmoid"""
def __init__(self, dropout_rate, embed_size, kernel_sizes, channel_nums):
super(TextCNN, self).__init__()
self.pool = GlobalMaxPool1d()
self.dropout = nn.Dropout(dropout_rate)
self.convs = nn.ModuleList()
for c, k in zip(channel_nums, kernel_sizes):
self.convs.append(nn.Conv1d(in_channels = embed_size,
out_channels = c,
kernel_size = k))
self.decoder = nn.Sequential(
nn.Linear(sum(channel_nums), 1),
nn.Sigmoid())
def forward(self, inputs):
inputs = inputs.permute(0, 2, 1)
encoding = torch.cat([self.pool(F.relu(conv(inputs))).squeeze(-1) for conv in self.convs], dim=1)
outputs = self.decoder(self.dropout(encoding))
return outputs
def load_feature(feature_type):
feature_file = './data/features/' + feature_type + '.pkl'
print(f'features get from {feature_file}.\n')
with open(feature_file, 'rb') as f:
data = pickle.load(f)
X_train, X_test, y_train, y_test = data['X_train'],data['X_test'],data['y_train'],data['y_test']
return X_train, X_test, y_train, y_test
def compute_metrics(all_trues, all_scores, threshold=0.5):
all_preds = (all_scores >= threshold)
acc = metrics.accuracy_score(all_trues, all_preds)
pre = metrics.precision_score(all_trues, all_preds)
rec = metrics.recall_score(all_trues, all_preds)
f1 = metrics.f1_score(all_trues, all_preds)
mcc = metrics.matthews_corrcoef(all_trues, all_preds)
fpr, tpr, _ = metrics.roc_curve(all_trues, all_scores)
AUC = metrics.auc(fpr, tpr)
p, r, _ = metrics.precision_recall_curve(all_trues, all_scores)
AUPR = metrics.auc(r, p)
return acc, f1, pre, rec, mcc, AUC, AUPR
def train_epoch(model, train_iter, optimizer, loss):
# Model on train mode
model.train()
all_trues = []
all_scores = []
losses, sample_num = 0.0, 0
for batch_idx, (X , y) in enumerate(train_iter):
sample_num += y.size(0)
# Create vaiables
with torch.no_grad():
X_var = torch.autograd.Variable(X.float())
y_var = torch.autograd.Variable(y.float())
# compute output
output = model(X_var).view(-1)
# calculate and record loss
loss_batch = loss(output, y_var)
losses += loss_batch.item()
# compute gradient and do SGD step
optimizer.zero_grad()
loss_batch.backward()
optimizer.step()
all_trues.append(y_var.data.cpu().numpy())
all_scores.append(output.data.cpu().numpy())
all_trues = np.concatenate(all_trues, axis=0)
all_scores = np.concatenate(all_scores, axis=0)
acc, f1, pre, rec, mcc, AUC, AUPR = compute_metrics(all_trues, all_scores)
return losses/sample_num, acc, f1, pre, rec, mcc, AUC, AUPR
def eval_epoch(model, eval_iter, loss):
# Model on eval mode
model.eval()
all_trues = []
all_scores = []
losses, sample_num = 0.0, 0
for batch_idx, (X , y) in enumerate(eval_iter):
sample_num += y.size(0)
# Create vaiables
with torch.no_grad():
X_var = torch.autograd.Variable(X.float())
y_var = torch.autograd.Variable(y.float())
# compute output
output = model(X_var).view(-1)
# compute loss and record loss
loss_batch = loss(output, y_var)
losses += loss_batch.item()
all_trues.append(y_var.data.cpu().numpy())
all_scores.append(output.data.cpu().numpy())
all_trues = np.concatenate(all_trues, axis=0)
all_scores = np.concatenate(all_scores, axis=0)
acc, f1, pre, rec, mcc, AUC, AUPR = compute_metrics(all_trues, all_scores)
return losses/sample_num, acc, f1, pre, rec, mcc, AUC, AUPR
def train(model, model_n, X_resampled, y_resampled, X_test, y_test, save, result_file, epoch_num, batch_size, lr):
# Data loaders
train_iter = Data.DataLoader(Data.TensorDataset(X_resampled, y_resampled), batch_size)
test_iter = Data.DataLoader(Data.TensorDataset(X_test, y_test), batch_size)
# Optimizer and loss
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr)
loss = nn.BCELoss()
# Train model
patience = 25
new_auc, count = .0, 0
for epoch in range(epoch_num):
train_loss, train_acc, train_f1, train_pre, train_rec, train_mcc, train_auc, train_aupr = train_epoch(
model=model,
train_iter=train_iter,
optimizer=optimizer,
loss=loss,
)
test_loss, acc, f1, pre, rec, mcc, auc, aupr = eval_epoch(
model=model,
eval_iter=test_iter,
loss=loss,
)
res = '\t'.join([
'\nEpoch [%d/%d]' % (epoch + 1, epoch_num),
'\nTraining set',
'loss:%0.5f' % train_loss,
'accuracy:%0.6f' % train_acc,
'f-score:%0.6f' % train_f1,
'precision:%0.6f' % train_pre,
'recall:%0.6f' % train_rec,
'mcc:%0.6f' % train_mcc,
'auc:%0.6f' % train_auc,
'aupr:%0.6f' % train_aupr,
'\nTesting set',
'loss:%0.5f' % test_loss,
'accuracy:%0.6f' % acc,
'f-score:%0.6f' % f1,
'precision:%0.6f' % pre,
'recall:%0.6f' % rec,
'mcc:%0.6f' % mcc,
'auc:%0.6f' % auc,
'aupr:%0.6f' % aupr,
])
print(res)
# Sava the model
if epoch>1 and train_auc > new_auc:
count = 0
new_auc = train_auc
print("!!!new model was saved, testing set AUC:{:.6f}".format(auc))
torch.save(model.state_dict(), os.path.join(save, 'model_{:0>2d}.pkl'.format(model_n)))
else:
count += 1
if count >= patience:
return None
# Start log
with open(os.path.join(save, result_file), 'a') as f:
if model_n == 1 and epoch == 0:
f.truncate(0)
f.write('model, epoch, train loss, train accuracy, train auc, test loss, accuracy, f-score, precision, recall, mcc, auc, aupr\n')
# Log results
if (epoch%10)-1 == 0 or count == 0:
f.write('%d, %d, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f\n' % (
model_n, (epoch + 1), train_loss, train_acc, train_auc, test_loss, acc, f1, pre, rec, mcc, auc, aupr))
def train_models(X_train, y_train, X_test, y_test, Model, k, epoch_num, batch_size, lr, save, result_file, train_device):
# train_device = device
n_model = 0
# shuffle train data
train_index = [i for i in range(len(y_train))]
random.shuffle(train_index)
X_train, y_train = X_train[train_index], y_train[train_index]
shapes = X_train.shape
while True:
n_model += 1
print(f'\n==================== Model {n_model}/{k} ====================')
# use RandomUnderSampler to sample
random_state = random.randint(1000,9999)
rus = RandomUnderSampler(random_state=random_state)
if len(shapes)==3:
X_train = X_train.reshape(shapes[0], shapes[1]*shapes[2])
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)
X_resampled = X_resampled.reshape(-1, shapes[1], shapes[2])
X_train = X_train.reshape(shapes[0], shapes[1], shapes[2])
else:
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)
X_resampled, y_resampled, X_test, y_test = torch.tensor(X_resampled, device=device), torch.tensor(y_resampled, device=device), torch.tensor(X_test, device=device), torch.tensor(y_test, device=device)
print(X_resampled.shape, y_resampled.shape, X_test.shape, y_test.shape)
# initial weight
model = Model
for m in model.modules():
if isinstance(m, (nn.Linear, nn.Conv1d)):
nn.init.xavier_normal_(m.weight.data)
# train
train(model, n_model, X_resampled, y_resampled, X_test, y_test, save, result_file, epoch_num, batch_size, lr)
if n_model>=k:
break
print(f'Get {k} base models.')
def ensemble_test(X_test, y_test, model, path_dir, result_file, models_num, threshold):
X_test = torch.tensor(X_test).to(device)
y_score_sum = [.0]*len(y_test)
model_n = 0
print('Load models in' + path_dir)
for f in gb.glob(path_dir + '/*pkl'):
model_n += 1
model.load_state_dict(torch.load(f, map_location=device))
model.eval()
y_score = model(X_test).view(-1).cpu().data.numpy()
y_score_sum += y_score
acc, f1, pre, rec, mcc, AUC, AUPR = compute_metrics(y_test, y_score, threshold)
# Start log
with open(os.path.join(path_dir, result_file), 'a') as f:
if model_n == 1:
f.truncate(0)
f.write('model_n, accuracy, f-score, precision, recall, mcc, auc, aupr\n')
# Log results
f.write('%d, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f\n' % (model_n, acc, f1, pre, rec, mcc, AUC, AUPR))
if model_n == models_num:
y_score_avg = y_score_sum/models_num
esb_acc, esb_f1, esb_pre, esb_rec, esb_mcc, esb_AUC, esb_AUPR = compute_metrics(y_test, y_score_avg, threshold)
print(f'\nGot {models_num} models! Ensembled models loaded done!')
res = '\t'.join([
'Evaluation results:\n'
'accuracy:%0.3f' % esb_acc,
'f-score:%0.3f' % esb_f1,
'precision:%0.3f' % esb_pre,
'recall:%0.3f' % esb_rec,
'mcc:%0.3f' % esb_mcc,
'auc:%0.3f' % esb_AUC,
'aupr:%0.3f' % esb_AUPR,
])
print(res)
# Log results
with open(os.path.join(path_dir, result_file), 'a') as f:
f.write('ensemble, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f, %0.6f\n' % (esb_acc, esb_f1, esb_pre, esb_rec, esb_mcc, esb_AUC, AUPR))
else:
print(f'\nGot {model_n} models! Ensembled models loaded fail!')
return
if __name__=='__main__':
# load data
feature_type = 'pssm'
X_train, X_test, y_train, y_test = load_feature(feature_type=feature_type)
print('Data has generated.')
# model
model_type = "TextCNN"
embed_size = 20 if feature_type=='onehot' or feature_type=='pssm' else 100
dropout_rate, kernel_sizes, channel_nums = 0.0, [5,9,13], [128,128,128]
model = TextCNN(dropout_rate, embed_size, kernel_sizes, channel_nums).to(device)
# param
threshold, models_num, epoch_num, batch_size, lr = 0.5, 17, 1000, 128, 0.001
path_dir = './saved_models'
record_file ='record.csv'
result_file ='results.csv'
if not os.path.exists(path_dir):
os.makedirs(path_dir)
print('Models save in ' + path_dir)
# train
train_models(X_train, y_train, X_test, y_test, model, models_num, epoch_num, batch_size, lr, path_dir, record_file, device)
# ensemble test
ensemble_test(X_test, y_test, model, path_dir, result_file, models_num, threshold)