diff --git a/CHANGES.rst b/CHANGES.rst index 0bddf686b..25a256ff2 100644 --- a/CHANGES.rst +++ b/CHANGES.rst @@ -1,6 +1,23 @@ Release history --------------- +2.10.0 (2023-04-18) ++++++++++++++++++++ + +* `hydroweb_next` (`hydroweb.next `_), thematic hub for hydrology data access, + as new provider (:pull:`711`) +* Search by tile standardized using ``tileIdentifier`` new query parameter and metadata (:pull:`713`) +* Server mode STAC API version updated to `1.0.0-rc.3` (:pull:`697`) +* Better catalogs title and description in server mode (:pull:`710`) +* Server mode advanced tests (:pull:`708`), and fixes for catalogs dates filtering (:pull:`706`), catalogs cloud-cover + filtering (:pull:`705`), missing `sensorType` error for discovered product types (:pull:`699`), broken links through + STAC search endpoint (:pull:`698`) +* Added links to `eodag-server `_ image on Dockerhub (:pull:`715`) +* EODAG server installation update in docker image (:pull:`700`) and sigterm fix (:pull:`702`) +* STAC browser docker image update (:pull:`704`) +* Various minor fixes and improvements (:pull:`693`)(:pull:`694`)(:pull:`695`)(:pull:`696`)(:pull:`703`)(:pull:`707`) + (:pull:`712`)(:pull:`714`) + 2.9.2 (2023-03-31) ++++++++++++++++++ diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md index 957e47c88..39fe6a114 100644 --- a/CODE_OF_CONDUCT.md +++ b/CODE_OF_CONDUCT.md @@ -61,7 +61,7 @@ representative at an online or offline event. Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at -admin@geostorm.eu. +eodag@csgroup.space. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the diff --git a/README.rst b/README.rst index b273519a2..661cd2a3d 100644 --- a/README.rst +++ b/README.rst @@ -115,7 +115,7 @@ check the `Python API User Guide `_: + +.. code-block:: bash + + docker run -p 5000:5000 --rm csspace/eodag-server:2.10.0 + You can also browse over your STAC API server using `STAC Browser `_. Simply run: diff --git a/docker/run-stac-server.sh b/docker/run-stac-server.sh index d1bcfdc14..4fb1cc4a3 100644 --- a/docker/run-stac-server.sh +++ b/docker/run-stac-server.sh @@ -8,4 +8,4 @@ else echo "Logging level can be changed using EODAG_LOGGING environment variable [1-3]" fi # start -eodag $LOGGING_OPTIONS serve-rest -w +exec eodag $LOGGING_OPTIONS serve-rest -w diff --git a/docker/stac-browser.dockerfile b/docker/stac-browser.dockerfile index 64926f770..46a883027 100644 --- a/docker/stac-browser.dockerfile +++ b/docker/stac-browser.dockerfile @@ -15,7 +15,7 @@ WORKDIR /stac-browser RUN npm install # start application -RUN npm run build -- --CATALOG_URL=http://localhost:5000 +RUN npm run build -- --catalogUrl=http://localhost:5000 # production stage, self describing FROM nginx:stable-alpine as production-stage diff --git a/docker/stac-server.dockerfile b/docker/stac-server.dockerfile index cac0e5683..543e1ea8e 100644 --- a/docker/stac-server.dockerfile +++ b/docker/stac-server.dockerfile @@ -46,14 +46,13 @@ ENV LC_ALL=en_US.UTF-8 \ LANG=en_US.UTF-8 # copy necessary files -COPY setup.py setup.py COPY setup.cfg setup.cfg COPY pyproject.toml pyproject.toml COPY README.rst README.rst COPY ./eodag /eodag/eodag # install eodag -RUN python setup.py install +RUN python -m pip install . # add python path ENV PYTHONPATH="${PYTHONPATH}:/eodag/eodag" diff --git a/docs/_static/params_mapping_extra.csv b/docs/_static/params_mapping_extra.csv index 9f782d2c4..42e45ec5d 100644 --- a/docs/_static/params_mapping_extra.csv +++ b/docs/_static/params_mapping_extra.csv @@ -5,7 +5,9 @@ collection,,,,:green:`queryable metadata`,:green:`queryable metadata`,,,,,,,,,,, defaultGeometry,,,,,,,,,,metadata only,,,,,, downloadLink,metadata only,,,metadata only,metadata only,metadata only,metadata only,metadata only,,metadata only,metadata only,metadata only,metadata only,metadata only,metadata only,metadata only geometry,:green:`queryable metadata`,,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata` +gridSquare,,,,,,:green:`queryable metadata`,,,,,,,,,, id,:green:`queryable metadata`,,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,metadata only,:green:`queryable metadata` +latitudeBand,,,,,,:green:`queryable metadata`,,,,,,,,,, orderLink,,,,,,,,,,metadata only,metadata only,,,,, polarizationChannels,metadata only,,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,,metadata only,metadata only,,:green:`queryable metadata`,,metadata only,:green:`queryable metadata` polarizationMode,,,,,,,metadata only,,,metadata only,,:green:`queryable metadata`,,:green:`queryable metadata`,metadata only, @@ -15,4 +17,6 @@ searchLink,,,,,,,,,,metadata only,,,,,, specification,,,,,,,,,,metadata only,,,,,, storageStatus,metadata only,,,metadata only,metadata only,metadata only,metadata only,metadata only,,metadata only,metadata only,metadata only,metadata only,metadata only,metadata only,metadata only thumbnail,metadata only,,,,,metadata only,metadata only,metadata only,,metadata only,,metadata only,metadata only,metadata only,metadata only,metadata only +tileIdentifier,,,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,,,,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,:green:`queryable metadata`,,:green:`queryable metadata`, uid,,,,metadata only,metadata only,,,,,metadata only,metadata only,metadata only,,metadata only,metadata only, +utmZone,,,,,,:green:`queryable metadata`,,,,,,,,,, diff --git a/docs/_static/params_mapping_offline_infos.json b/docs/_static/params_mapping_offline_infos.json index b80c59136..d47ec2569 100644 --- a/docs/_static/params_mapping_offline_infos.json +++ b/docs/_static/params_mapping_offline_infos.json @@ -1 +1 @@ -{"abstract": {"parameter": "abstract", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Abstract.", "type": "String"}, "accessConstraint": {"parameter": "accessConstraint", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Applied to assure the protection of privacy or intellectual property, and any special restrictions or limitations on obtaining the resource", "type": "String "}, "acquisitionStation": {"parameter": "acquisitionStation", "open-search": true, "class": "", "description": "", "type": ""}, "acquisitionSubType": {"parameter": "acquisitionSubType", "open-search": true, "class": "", "description": "", "type": ""}, "acquisitionType": {"parameter": "acquisitionType", "open-search": true, "class": "", "description": "", "type": ""}, "antennaLookDirection": {"parameter": "antennaLookDirection", "open-search": true, "class": "", "description": "", "type": ""}, "archivingCenter": {"parameter": "archivingCenter", "open-search": true, "class": "", "description": "", "type": ""}, "assets": {"parameter": "assets", "open-search": "", "class": "", "description": "", "type": ""}, "availabilityTime": {"parameter": "availabilityTime", "open-search": true, "class": "", "description": "", "type": ""}, "awsProductId": {"parameter": "awsProductId", "open-search": "", "class": "", "description": "", "type": ""}, "classification": {"parameter": "classification", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Name of the handling restrictions on the resource or metadata", "type": "String "}, "cloudCover": {"parameter": "cloudCover", "open-search": true, "class": "", "description": "", "type": ""}, "collection": {"parameter": "collection", "open-search": "", "class": "", "description": "", "type": ""}, "completionTimeFromAscendingNode": {"parameter": "completionTimeFromAscendingNode", "open-search": true, "class": "", "description": "", "type": ""}, "compositeType": {"parameter": "compositeType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "Type of composite product expressed as time period that the composite product covers (e.g. P10D for a 10 day composite)", "type": "String"}, "creationDate": {"parameter": "creationDate", "open-search": true, "class": "", "description": "", "type": ""}, "defaultGeometry": {"parameter": "defaultGeometry", "open-search": "", "class": "", "description": "", "type": ""}, "dissemination": {"parameter": "dissemination", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the dissemination method (e.g. EUMETCast, EUMETCast-Europe, DataCentre)", "type": "String"}, "doi": {"parameter": "doi", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "Digital Object Identifier identifying the product (see http://www.doi.org)", "type": "String"}, "dopplerFrequency": {"parameter": "dopplerFrequency", "open-search": true, "class": "", "description": "", "type": ""}, "downloadLink": {"parameter": "downloadLink", "open-search": "", "class": "", "description": "", "type": ""}, "frame": {"parameter": "frame", "open-search": true, "class": "", "description": "", "type": ""}, "geometry": {"parameter": "geometry", "open-search": "", "class": "", "description": "", "type": ""}, "hasSecurityConstraints": {"parameter": "hasSecurityConstraints", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string informing if the resource has any security constraints. Possible values: TRUE, FALSE", "type": "String"}, "highestLocation": {"parameter": "highestLocation", "open-search": true, "class": "", "description": "", "type": ""}, "id": {"parameter": "id", "open-search": "", "class": "", "description": "", "type": ""}, "illuminationAzimuthAngle": {"parameter": "illuminationAzimuthAngle", "open-search": true, "class": "", "description": "", "type": ""}, "illuminationElevationAngle": {"parameter": "illuminationElevationAngle", "open-search": true, "class": "", "description": "", "type": ""}, "illuminationZenithAngle": {"parameter": "illuminationZenithAngle", "open-search": true, "class": "", "description": "", "type": ""}, "incidenceAngleVariation": {"parameter": "incidenceAngleVariation", "open-search": true, "class": "", "description": "", "type": ""}, "instrument": {"parameter": "instrument", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the instrument (e.g. MERIS, AATSR, ASAR, HRVIR. SAR).", "type": "String"}, "keyword": {"parameter": "keyword", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Commonly used word(s) or formalised word(s) or phrase(s) used to describe the subject.", "type": "String"}, "language": {"parameter": "language", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Language of the intellectual content of the metadata record", "type": "String "}, "lineage": {"parameter": "lineage", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "General explanation of the data producer\u2019s knowledge about the lineage of a dataset.", "type": "String"}, "lowestLocation": {"parameter": "lowestLocation", "open-search": true, "class": "", "description": "", "type": ""}, "maximumIncidenceAngle": {"parameter": "maximumIncidenceAngle", "open-search": true, "class": "", "description": "", "type": ""}, "minimumIncidenceAngle": {"parameter": "minimumIncidenceAngle", "open-search": true, "class": "", "description": "", "type": ""}, "modificationDate": {"parameter": "modificationDate", "open-search": true, "class": "", "description": "", "type": ""}, "orbitDirection": {"parameter": "orbitDirection", "open-search": true, "class": "", "description": "", "type": ""}, "orbitNumber": {"parameter": "orbitNumber", "open-search": true, "class": "", "description": "", "type": ""}, "orbitType": {"parameter": "orbitType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the platform orbit type (e.g. LEO, GEO)", "type": "String"}, "orderLink": {"parameter": "orderLink", "open-search": "", "class": "", "description": "", "type": ""}, "organisationName": {"parameter": "organisationName", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A string identifying the name of the organization responsible for the resource", "type": "String"}, "organisationRole": {"parameter": "organisationRole", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "The function performed by the responsible party", "type": "String "}, "otherConstraint": {"parameter": "otherConstraint", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Other restrictions and legal prerequisites for accessing and using the resource or metadata.", "type": "String"}, "parentIdentifier": {"parameter": "parentIdentifier", "open-search": true, "class": "", "description": "", "type": ""}, "platform": {"parameter": "platform", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string with the platform short name (e.g. Sentinel-1)", "type": "String"}, "platformSerialIdentifier": {"parameter": "platformSerialIdentifier", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string with the Platform serial identifier", "type": "String"}, "polarizationChannels": {"parameter": "polarizationChannels", "open-search": "", "class": "", "description": "", "type": ""}, "polarizationMode": {"parameter": "polarizationMode", "open-search": "", "class": "", "description": "", "type": ""}, "processingCenter": {"parameter": "processingCenter", "open-search": true, "class": "", "description": "", "type": ""}, "processingDate": {"parameter": "processingDate", "open-search": true, "class": "", "description": "", "type": ""}, "processingLevel": {"parameter": "processingLevel", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the processing level applied to the entry", "type": "String"}, "processingMode": {"parameter": "processingMode", "open-search": true, "class": "", "description": "", "type": ""}, "processorName": {"parameter": "processorName", "open-search": true, "class": "", "description": "", "type": ""}, "productIdentifier": {"parameter": "productIdentifier", "open-search": "", "class": "", "description": "", "type": ""}, "productQualityDegradationTag": {"parameter": "productQualityDegradationTag", "open-search": true, "class": "", "description": "", "type": ""}, "productQualityStatus": {"parameter": "productQualityStatus", "open-search": true, "class": "", "description": "", "type": ""}, "productType": {"parameter": "productType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the entry type (e.g. ER02_SAR_IM__0P, MER_RR__1P, SM_SLC__1S, GES_DISC_AIRH3STD_V005)", "type": "String "}, "productVersion": {"parameter": "productVersion", "open-search": true, "class": "", "description": "", "type": ""}, "publicationDate": {"parameter": "publicationDate", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "The date when the resource was issued", "type": "Date time"}, "quicklook": {"parameter": "quicklook", "open-search": "", "class": "", "description": "", "type": ""}, "resolution": {"parameter": "resolution", "open-search": true, "class": "", "description": "", "type": ""}, "searchLink": {"parameter": "searchLink", "open-search": "", "class": "", "description": "", "type": ""}, "sensorMode": {"parameter": "sensorMode", "open-search": true, "class": "", "description": "", "type": ""}, "sensorType": {"parameter": "sensorType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the sensor type. Suggested values are: OPTICAL, RADAR, ALTIMETRIC, ATMOSPHERIC, LIMB", "type": "String"}, "snowCover": {"parameter": "snowCover", "open-search": true, "class": "", "description": "", "type": ""}, "specification": {"parameter": "specification", "open-search": "", "class": "", "description": "", "type": ""}, "spectralRange": {"parameter": "spectralRange", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the sensor spectral range (e.g. INFRARED, NEAR-INFRARED, UV, VISIBLE)", "type": "String"}, "startTimeFromAscendingNode": {"parameter": "startTimeFromAscendingNode", "open-search": true, "class": "", "description": "", "type": ""}, "storageStatus": {"parameter": "storageStatus", "open-search": "", "class": "", "description": "", "type": ""}, "swathIdentifier": {"parameter": "swathIdentifier", "open-search": true, "class": "", "description": "", "type": ""}, "thumbnail": {"parameter": "thumbnail", "open-search": "", "class": "", "description": "", "type": ""}, "title": {"parameter": "title", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A name given to the resource", "type": "String "}, "topicCategory": {"parameter": "topicCategory", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Main theme(s) of the dataset", "type": "String "}, "track": {"parameter": "track", "open-search": true, "class": "", "description": "", "type": ""}, "uid": {"parameter": "uid", "open-search": "", "class": "", "description": "", "type": ""}, "useLimitation": {"parameter": "useLimitation", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A string identifying informing if the resource has usage limitations", "type": "String"}, "wavelengths": {"parameter": "wavelengths", "open-search": true, "class": "", "description": "", "type": ""}} +{"abstract": {"parameter": "abstract", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Abstract.", "type": "String"}, "accessConstraint": {"parameter": "accessConstraint", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Applied to assure the protection of privacy or intellectual property, and any special restrictions or limitations on obtaining the resource", "type": "String "}, "acquisitionStation": {"parameter": "acquisitionStation", "open-search": true, "class": "", "description": "", "type": ""}, "acquisitionSubType": {"parameter": "acquisitionSubType", "open-search": true, "class": "", "description": "", "type": ""}, "acquisitionType": {"parameter": "acquisitionType", "open-search": true, "class": "", "description": "", "type": ""}, "antennaLookDirection": {"parameter": "antennaLookDirection", "open-search": true, "class": "", "description": "", "type": ""}, "archivingCenter": {"parameter": "archivingCenter", "open-search": true, "class": "", "description": "", "type": ""}, "assets": {"parameter": "assets", "open-search": "", "class": "", "description": "", "type": ""}, "availabilityTime": {"parameter": "availabilityTime", "open-search": true, "class": "", "description": "", "type": ""}, "awsProductId": {"parameter": "awsProductId", "open-search": "", "class": "", "description": "", "type": ""}, "classification": {"parameter": "classification", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Name of the handling restrictions on the resource or metadata", "type": "String "}, "cloudCover": {"parameter": "cloudCover", "open-search": true, "class": "", "description": "", "type": ""}, "collection": {"parameter": "collection", "open-search": "", "class": "", "description": "", "type": ""}, "completionTimeFromAscendingNode": {"parameter": "completionTimeFromAscendingNode", "open-search": true, "class": "", "description": "", "type": ""}, "compositeType": {"parameter": "compositeType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "Type of composite product expressed as time period that the composite product covers (e.g. P10D for a 10 day composite)", "type": "String"}, "creationDate": {"parameter": "creationDate", "open-search": true, "class": "", "description": "", "type": ""}, "defaultGeometry": {"parameter": "defaultGeometry", "open-search": "", "class": "", "description": "", "type": ""}, "dissemination": {"parameter": "dissemination", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the dissemination method (e.g. EUMETCast, EUMETCast-Europe, DataCentre)", "type": "String"}, "doi": {"parameter": "doi", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "Digital Object Identifier identifying the product (see http://www.doi.org)", "type": "String"}, "dopplerFrequency": {"parameter": "dopplerFrequency", "open-search": true, "class": "", "description": "", "type": ""}, "downloadLink": {"parameter": "downloadLink", "open-search": "", "class": "", "description": "", "type": ""}, "frame": {"parameter": "frame", "open-search": true, "class": "", "description": "", "type": ""}, "geometry": {"parameter": "geometry", "open-search": "", "class": "", "description": "", "type": ""}, "gridSquare": {"parameter": "gridSquare", "open-search": "", "class": "", "description": "", "type": ""}, "hasSecurityConstraints": {"parameter": "hasSecurityConstraints", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string informing if the resource has any security constraints. Possible values: TRUE, FALSE", "type": "String"}, "highestLocation": {"parameter": "highestLocation", "open-search": true, "class": "", "description": "", "type": ""}, "id": {"parameter": "id", "open-search": "", "class": "", "description": "", "type": ""}, "illuminationAzimuthAngle": {"parameter": "illuminationAzimuthAngle", "open-search": true, "class": "", "description": "", "type": ""}, "illuminationElevationAngle": {"parameter": "illuminationElevationAngle", "open-search": true, "class": "", "description": "", "type": ""}, "illuminationZenithAngle": {"parameter": "illuminationZenithAngle", "open-search": true, "class": "", "description": "", "type": ""}, "incidenceAngleVariation": {"parameter": "incidenceAngleVariation", "open-search": true, "class": "", "description": "", "type": ""}, "instrument": {"parameter": "instrument", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the instrument (e.g. MERIS, AATSR, ASAR, HRVIR. SAR).", "type": "String"}, "keyword": {"parameter": "keyword", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Commonly used word(s) or formalised word(s) or phrase(s) used to describe the subject.", "type": "String"}, "language": {"parameter": "language", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Language of the intellectual content of the metadata record", "type": "String "}, "latitudeBand": {"parameter": "latitudeBand", "open-search": "", "class": "", "description": "", "type": ""}, "lineage": {"parameter": "lineage", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "General explanation of the data producer\u2019s knowledge about the lineage of a dataset.", "type": "String"}, "lowestLocation": {"parameter": "lowestLocation", "open-search": true, "class": "", "description": "", "type": ""}, "maximumIncidenceAngle": {"parameter": "maximumIncidenceAngle", "open-search": true, "class": "", "description": "", "type": ""}, "minimumIncidenceAngle": {"parameter": "minimumIncidenceAngle", "open-search": true, "class": "", "description": "", "type": ""}, "modificationDate": {"parameter": "modificationDate", "open-search": true, "class": "", "description": "", "type": ""}, "orbitDirection": {"parameter": "orbitDirection", "open-search": true, "class": "", "description": "", "type": ""}, "orbitNumber": {"parameter": "orbitNumber", "open-search": true, "class": "", "description": "", "type": ""}, "orbitType": {"parameter": "orbitType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the platform orbit type (e.g. LEO, GEO)", "type": "String"}, "orderLink": {"parameter": "orderLink", "open-search": "", "class": "", "description": "", "type": ""}, "organisationName": {"parameter": "organisationName", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A string identifying the name of the organization responsible for the resource", "type": "String"}, "organisationRole": {"parameter": "organisationRole", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "The function performed by the responsible party", "type": "String "}, "otherConstraint": {"parameter": "otherConstraint", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Other restrictions and legal prerequisites for accessing and using the resource or metadata.", "type": "String"}, "parentIdentifier": {"parameter": "parentIdentifier", "open-search": true, "class": "", "description": "", "type": ""}, "platform": {"parameter": "platform", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string with the platform short name (e.g. Sentinel-1)", "type": "String"}, "platformSerialIdentifier": {"parameter": "platformSerialIdentifier", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string with the Platform serial identifier", "type": "String"}, "polarizationChannels": {"parameter": "polarizationChannels", "open-search": "", "class": "", "description": "", "type": ""}, "polarizationMode": {"parameter": "polarizationMode", "open-search": "", "class": "", "description": "", "type": ""}, "processingCenter": {"parameter": "processingCenter", "open-search": true, "class": "", "description": "", "type": ""}, "processingDate": {"parameter": "processingDate", "open-search": true, "class": "", "description": "", "type": ""}, "processingLevel": {"parameter": "processingLevel", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the processing level applied to the entry", "type": "String"}, "processingMode": {"parameter": "processingMode", "open-search": true, "class": "", "description": "", "type": ""}, "processorName": {"parameter": "processorName", "open-search": true, "class": "", "description": "", "type": ""}, "productIdentifier": {"parameter": "productIdentifier", "open-search": "", "class": "", "description": "", "type": ""}, "productQualityDegradationTag": {"parameter": "productQualityDegradationTag", "open-search": true, "class": "", "description": "", "type": ""}, "productQualityStatus": {"parameter": "productQualityStatus", "open-search": true, "class": "", "description": "", "type": ""}, "productType": {"parameter": "productType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the entry type (e.g. ER02_SAR_IM__0P, MER_RR__1P, SM_SLC__1S, GES_DISC_AIRH3STD_V005)", "type": "String "}, "productVersion": {"parameter": "productVersion", "open-search": true, "class": "", "description": "", "type": ""}, "publicationDate": {"parameter": "publicationDate", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "The date when the resource was issued", "type": "Date time"}, "quicklook": {"parameter": "quicklook", "open-search": "", "class": "", "description": "", "type": ""}, "resolution": {"parameter": "resolution", "open-search": true, "class": "", "description": "", "type": ""}, "searchLink": {"parameter": "searchLink", "open-search": "", "class": "", "description": "", "type": ""}, "sensorMode": {"parameter": "sensorMode", "open-search": true, "class": "", "description": "", "type": ""}, "sensorType": {"parameter": "sensorType", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the sensor type. Suggested values are: OPTICAL, RADAR, ALTIMETRIC, ATMOSPHERIC, LIMB", "type": "String"}, "snowCover": {"parameter": "snowCover", "open-search": true, "class": "", "description": "", "type": ""}, "specification": {"parameter": "specification", "open-search": "", "class": "", "description": "", "type": ""}, "spectralRange": {"parameter": "spectralRange", "open-search": true, "class": "OpenSearch Parameters for Collection Search", "description": "A string identifying the sensor spectral range (e.g. INFRARED, NEAR-INFRARED, UV, VISIBLE)", "type": "String"}, "startTimeFromAscendingNode": {"parameter": "startTimeFromAscendingNode", "open-search": true, "class": "", "description": "", "type": ""}, "storageStatus": {"parameter": "storageStatus", "open-search": "", "class": "", "description": "", "type": ""}, "swathIdentifier": {"parameter": "swathIdentifier", "open-search": true, "class": "", "description": "", "type": ""}, "thumbnail": {"parameter": "thumbnail", "open-search": "", "class": "", "description": "", "type": ""}, "tileIdentifier": {"parameter": "tileIdentifier", "open-search": "", "class": "", "description": "", "type": ""}, "title": {"parameter": "title", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A name given to the resource", "type": "String "}, "topicCategory": {"parameter": "topicCategory", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "Main theme(s) of the dataset", "type": "String "}, "track": {"parameter": "track", "open-search": true, "class": "", "description": "", "type": ""}, "uid": {"parameter": "uid", "open-search": "", "class": "", "description": "", "type": ""}, "useLimitation": {"parameter": "useLimitation", "open-search": true, "class": "Additional INSPIRE obligated OpenSearch Parameters for Collection Search", "description": "A string identifying informing if the resource has usage limitations", "type": "String"}, "utmZone": {"parameter": "utmZone", "open-search": "", "class": "", "description": "", "type": ""}, "wavelengths": {"parameter": "wavelengths", "open-search": true, "class": "", "description": "", "type": ""}} diff --git a/docs/_static/product_types_information.csv b/docs/_static/product_types_information.csv index b3a41e55e..245b2137e 100644 --- a/docs/_static/product_types_information.csv +++ b/docs/_static/product_types_information.csv @@ -1,98 +1,98 @@ -product type,abstract,instrument,platform,platformSerialIdentifier,processingLevel,keywords,sensorType,license,title,missionStartDate,astraea_eod,aws_eos,cop_ads,cop_cds,cop_dataspace,creodias,earth_search,earth_search_cog,earth_search_gcs,ecmwf,meteoblue,mundi,onda,peps,planetary_computer,sara,theia,usgs,usgs_satapi_aws -CAMS_EAC4,CAMS (Copernicus Atmosphere Monitoring Service) ECMWF Atmospheric Composition Reanalysis 4 from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Reanalysis,CAMS,EAC4,ADS,ECMWF",ATMOSPHERIC,proprietary,CAMS ECMWF Atmospheric Composition Reanalysis 4,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,, -CAMS_GACF_AOT,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Aerosol Optical Thickness from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,AOT,ADS",ATMOSPHERIC,proprietary,CAMS GACF Aerosol Optical Thickness,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,, -CAMS_GACF_MR,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Mixing Ratios from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,MR,ADS",ATMOSPHERIC,proprietary,CAMS GACF Mixing Ratios,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,, -CAMS_GACF_RH,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Relative Humidity from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,RH,ADS",ATMOSPHERIC,proprietary,CAMS GACF Relative Humidity,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,, -CBERS4_AWFI_L2,"China-Brazil Earth Resources Satellite, CBERS-4 AWFI camera Level-2 product. System corrected images, expect some translation error. ",AWFI,CBERS,CBERS-4,L2,"AWFI,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 AWFI Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_AWFI_L4,"China-Brazil Earth Resources Satellite, CBERS-4 AWFI camera Level-4 product. Orthorectified with ground control points. ",AWFI,CBERS,CBERS-4,L4,"AWFI,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 AWFI Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_MUX_L2,"China-Brazil Earth Resources Satellite, CBERS-4 MUX camera Level-2 product. System corrected images, expect some translation error. ",MUX,CBERS,CBERS-4,L2,"MUX,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 MUX Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_MUX_L4,"China-Brazil Earth Resources Satellite, CBERS-4 MUX camera Level-4 product. Orthorectified with ground control points. ",MUX,CBERS,CBERS-4,L4,"MUX,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 MUX Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_PAN10M_L2,"China-Brazil Earth Resources Satellite, CBERS-4 PAN10M camera Level-2 product. System corrected images, expect some translation error. ",PAN10M,CBERS,CBERS-4,L2,"PAN10M,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 PAN10M Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_PAN10M_L4,"China-Brazil Earth Resources Satellite, CBERS-4 PAN10M camera Level-4 product. Orthorectified with ground control points. ",PAN10M,CBERS,CBERS-4,L4,"PAN10M,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 PAN10M Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_PAN5M_L2,"China-Brazil Earth Resources Satellite, CBERS-4 PAN5M camera Level-2 product. System corrected images, expect some translation error. ",PAN5M,CBERS,CBERS-4,L2,"PAN5M,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 PAN5M Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -CBERS4_PAN5M_L4,"China-Brazil Earth Resources Satellite, CBERS-4 PAN5M camera Level-4 product. Orthorectified with ground control points. ",PAN5M,CBERS,CBERS-4,L4,"PAN5M,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 PAN5M Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,, -ERA5_SL,"ERA5 ECMWF climate reanalysis data on many atmospheric, land-surface and sea-state parameters together with estimates of uncertainty. Hourly data on Single Levels from 1959 to present. ",,ERA5,ERA5,,"ECMWF,Reanalysis,ERA5,CDS,Atmospheric,land,sea,hourly,single,levels",ATMOSPHERIC,proprietary,ERA5 Hourly data on Single Levels,1959-01-01T00:00:00Z,,,,available,,,,,,,,,,,,,,, -L57_REFLECTANCE,"Landsat 5,7,8 L2A data (old format) distributed by Theia (2014 to 2017-03-20) using MUSCATE prototype, Lamber 93 projection. ","OLI,TIRS",LANDSAT,"L5,L7,L8",L2A,"OLI,TIRS,LANDSAT,L5,L7,L8,L2,L2A,MUSCATE",OPTICAL,proprietary,"Landsat 5,7,8 Level-2A",2014-01-01T00:00:00Z,,,,,,,,,,,,,,,,,available,, -L8_OLI_TIRS_C1L1,Landsat 8 Operational Land Imager and Thermal Infrared Sensor Collection 1 Level-1 products. Details at https://landsat.usgs.gov/sites/default/files/documents/LSDS-1656_Landsat_Level-1_Product_Collection_Definition.pdf ,"OLI,TIRS",LANDSAT8,L8,L1,"OLI,TIRS,LANDSAT,LANDSAT8,L8,L1,C1,COLLECTION1",OPTICAL,proprietary,Landsat 8 Level-1,2013-02-11T00:00:00Z,,available,,,,,available,,available,,,,available,,,,,, -L8_REFLECTANCE,"Landsat 8 L2A data distributed by Theia since 2017-03-20 using operational version of MUSCATE, UTM projection, and tiled using Sentinel-2 tiles. ","OLI,TIRS",LANDSAT8,L8,L2A,"OLI,TIRS,LANDSAT,LANDSAT8,L8,L2,L2A,MUSCATE",OPTICAL,proprietary,Landsat 8 Level-2A,2013-02-11T00:00:00Z,,,,,,,,,,,,,,,,,available,, -LANDSAT_C2L1,The Landsat Level-1 product is a top of atmosphere product distributed as scaled and calibrated digital numbers. ,"OLI,TIRS",LANDSAT,"L1,L2,L3,L4,L5,L6,L7,L8",L1,"OLI,TIRS,LANDSAT,L1,L2,L3,L4,L5,L6,L7,L8,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-1 Product,1972-07-25T00:00:00Z,available,,,,,,,,,,,,,,available,,,available,available -LANDSAT_C2L2,Collection 2 Landsat OLI/TIRS Level-2 Science Products (L2SP) include Surface Reflectance and Surface Temperature scene-based products. ,"OLI,TIRS",LANDSAT,"L8,L9",L1,"OLI,TIRS,LANDSAT,L8,L9,L2,C2,COLLECTION2",OPTICAL,proprietary,Landsat OLI and TIRS Collection 2 Level-2 Science Products 30-meter multispectral data.,2013-02-11T00:00:00Z,,,,,,,,,,,,,,,available,,,available, -LANDSAT_C2L2ALB_BT,"The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin. ","OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,BT,Brightness,Temperature,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Top of Atmosphere Brightness Temperature (BT) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -LANDSAT_C2L2ALB_SR,The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,SR,Surface,Reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Surface Reflectance (SR) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -LANDSAT_C2L2ALB_ST,The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K). ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,Surface,Temperature,ST,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Surface Temperature (ST) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -LANDSAT_C2L2ALB_TA,The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,TA,Top,Atmosphere,Reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Top of Atmosphere (TA) Reflectance Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -LANDSAT_C2L2_SR,The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,SR,surface,reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 UTM Surface Reflectance (SR) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -LANDSAT_C2L2_ST,The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K). ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,ST,surface,temperature,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 UTM Surface Temperature (ST) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,available -MODIS_MCD43A4,"The MODerate-resolution Imaging Spectroradiometer (MODIS) Reflectance product MCD43A4 provides 500 meter reflectance data adjusted using a bidirectional reflectance distribution function (BRDF) to model the values as if they were taken from nadir view. The MCD43A4 product contains 16 days of data provided in a level-3 gridded data set in Sinusoidal projection. Both Terra and Aqua data are used in the generation of this product, providing the highest probability for quality assurance input data. It is designated with a shortname beginning with MCD, which is used to refer to 'combined' products, those comprised of data using both Terra and Aqua. ",MODIS,Terra+Aqua,EOS AM-1+PM-1,L3,"MODIS,Terra,Aqua,EOS,AM-1+PM-1,L3,MCD43A4",OPTICAL,proprietary,MODIS MCD43A4,2000-03-05T00:00:00Z,available,available,,,,,,,,,,,,,available,,,, -NAIP,"The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This ""leaf-on"" imagery and typically ranges from 60 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format. NAIP data is delivered at the state level; every year, a number of states receive updates, with an overall update cycle of two or three years. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP imagery is formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. ",film and digital cameras,National Agriculture Imagery Program,NAIP,N/A,"film,digital,cameras,Agriculture,NAIP",OPTICAL,proprietary,National Agriculture Imagery Program,2003-01-01T00:00:00Z,available,available,,,,,,,,,,,,,available,,,, -NEMSAUTO_TCDC,Total cloud cover from NOAAmodel Environment Monitoring System (NEMS) automatic domain switch. NEMSAUTO is the automatic delivery of the highest resolution meteoblue model available for any requested period of time and location. The NEMS model family are improved NMM successors (operational since 2013). NEMS is a multi-scale model (used from global down to local domains) and significantly improves cloud-development and precipitation forecast. Note that Automatic domain switching is only supported for multi point queries. Support for polygons may follow later. ,,NEMSAUTO,NEMSAUTO,,"meteoblue,NEMS,NEMSAUTO,CLOUD,COVER,TOTAL,TCDC,DAILY,MEAN",ATMOSPHERIC,proprietary,NEMSAUTO Total Cloud Cover daily mean,1984-01-01T00:00:00Z,,,,,,,,,,,available,,,,,,,, -NEMSGLOBAL_TCDC,Total cloud cover from NOAAmodel Environment Monitoring System (NEMS) global model. NEMSGLOBAL has 30km spatial and 1h temporal resolutions and produces seamless datasets from 1984 to 7 days ahead. ,,NEMSGLOBAL,NEMSGLOBAL,,"meteoblue,NEMS,NEMSGLOBAL,CLOUD,COVER,TOTAL,TCDC,DAILY,MEAN",ATMOSPHERIC,proprietary,NEMSGLOBAL Total Cloud Cover daily mean,1984-01-01T00:00:00Z,,,,,,,,,,,available,,,,,,,, -OSO,An overview of OSO Land Cover data is given on https://www.theia-land.fr/en/ceslist/land-cover-sec/ and the specific description of OSO products is available on https://www.theia-land.fr/product/carte-doccupation-des-sols-de-la-france-metropolitaine/ ,,,,L3B,"L3B,OSO,land,cover",,proprietary,OSO Land Cover,2016-01-01T00:00:00Z,,,,,,,,,,,,,,,,,available,, -PLD_BUNDLE,"Pleiades Bundle (Pan, XS)",PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,BUNDLE,Pan,Xs",OPTICAL,proprietary,Pleiades Bundle,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,available,, -PLD_PAN,Pleiades Panchromatic (Pan),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,PAN,Panchromatic",OPTICAL,proprietary,Pleiades Panchromatic,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,available,, -PLD_PANSHARPENED,Pleiades Pansharpened (Pan+XS),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,PANSHARPENED,Pan,Xs",OPTICAL,proprietary,Pleiades Pansharpened,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,available,, -PLD_XS,Pleiades Multispectral (XS),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,XS,Multispectral",OPTICAL,proprietary,Pleiades Multispectral,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,available,, -S1_SAR_GRD,"Level-1 Ground Range Detected (GRD) products consist of focused SAR data that has been detected, multi-looked and projected to ground range using an Earth ellipsoid model. Phase information is lost. The resulting product has approximately square spatial resolution pixels and square pixel spacing with reduced speckle at the cost of worse spatial resolution. GRD products can be in one of three resolutions: Full Resolution (FR), High Resolution (HR), Medium Resolution (MR). The resolution is dependent upon the amount of multi-looking performed. Level-1 GRD products are available in MR and HR for IW and EW modes, MR for WV mode and MR, HR and FR for SM mode. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L1,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L1,GRD,SAFE",RADAR,proprietary,SENTINEL1 Level-1 Ground Range Detected,2014-04-03T00:00:00Z,available,available,,,available,available,,,,,,available,available,available,available,available,,, -S1_SAR_OCN,"Level-2 OCN products include components for Ocean Swell spectra (OSW) providing continuity with ERS and ASAR WV and two new components: Ocean Wind Fields (OWI) and Surface Radial Velocities (RVL). The OSW is a two-dimensional ocean surface swell spectrum and includes an estimate of the wind speed and direction per swell spectrum. The OSW is generated from Stripmap and Wave modes only. For Stripmap mode, there are multiple spectra derived from internally generated Level-1 SLC images. For Wave mode, there is one spectrum per vignette. The OWI is a ground range gridded estimate of the surface wind speed and direction at 10 m above the surface derived from internally generated Level-1 GRD images of SM, IW or EW modes. The RVL is a ground range gridded difference between the measured Level-2 Doppler grid and the Level-1 calculated geometrical Doppler. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L2,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L2,OCN,SAFE",RADAR,proprietary,SENTINEL1 Level-2 OCN,2014-04-03T00:00:00Z,,,,,available,available,,,,,,available,available,available,,available,,, -S1_SAR_RAW,"The SAR Level-0 products consist of the sequence of Flexible Dynamic Block Adaptive Quantization (FDBAQ) compressed unfocused SAR raw data. For the data to be usable, it will need to be decompressed and processed using a SAR processor. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L0,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L0,RAW,SAFE",RADAR,proprietary,SENTINEL1 SAR Level-0,2014-04-03T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S1_SAR_SLC,"Level-1 Single Look Complex (SLC) products consist of focused SAR data geo-referenced using orbit and attitude data from the satellite and provided in zero-Doppler slant-range geometry. The products include a single look in each dimension using the full transmit signal bandwidth and consist of complex samples preserving the phase information. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L1,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L1,SLC,SAFE",RADAR,proprietary,SENTINEL1 Level-1 Single Look Complex,2014-04-03T00:00:00Z,,,,,available,available,,,,,,available,available,available,,available,,, -S2_MSI_L1C,"The Level-1C product is composed of 100x100 km2 tiles (ortho-images in UTM/WGS84 projection). It results from using a Digital Elevation Model (DEM) to project the image in cartographic geometry. Per-pixel radiometric measurements are provided in Top Of Atmosphere (TOA) reflectances along with the parameters to transform them into radiances. Level-1C products are resampled with a constant Ground Sampling Distance (GSD) of 10, 20 and 60 meters depending on the native resolution of the different spectral bands. In Level-1C products, pixel coordinates refer to the upper left corner of the pixel. Level-1C products will additionally include Cloud Masks and ECMWF data (total column of ozone, total column of water vapour and mean sea level pressure). SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/data-formats ",MSI,SENTINEL2,"S2A,S2B",L1,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L1,L1C,SAFE",OPTICAL,proprietary,SENTINEL2 Level-1C,2015-06-23T00:00:00Z,available,available,,,available,available,available,,available,,,available,available,available,,available,,available, -S2_MSI_L2A,"The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance images derived from the associated Level-1C products. Each Level-2A product is composed of 100x100 km2 tiles in cartographic geometry (UTM/WGS84 projection). SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/data-formats ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,SAFE",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,available,available,,,available,available,available,,,,,available,available,available,available,available,,, -S2_MSI_L2A_COG,"The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance images derived from the associated Level-1C products. Each Level-2A product is composed of 100x100 km2 tiles in cartographic geometry (UTM/WGS84 projection). Product containing Cloud Optimized GeoTIFF images, without SAFE formatting. ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,COG",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,,,,,,,,available,,,,,,,,,,, -S2_MSI_L2A_MAJA,"The level 2A products correct the data for atmospheric effects and detect the clouds and their shadows using MAJA. MAJA uses MUSCATE processing center at CNES, in the framework of THEIA land data center. Sentinel-2 level 1C data are downloaded from PEPS. The full description of the product format is available at https://theia.cnes.fr/atdistrib/documents/PSC-NT-411-0362-CNES_01_00_SENTINEL-2A_L2A_Products_Description.pdf ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,MAJA",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,available,, -S2_MSI_L2B_MAJA_SNOW,The Theia snow product is derived from Sentinel-2 L2A images generated by Theia. It indicates the snow presence or absence on the land surface every fifth day if there is no cloud. The product is distributed by Theia as a raster file (8 bits GeoTIFF) of 20 m resolution and a vector file (Shapefile polygons). More details about the snow products description are available at http://www.cesbio.ups-tlse.fr/multitemp/?page_id=10748#en ,MSI,SENTINEL2,"S2A,S2B",L2,"MSI,MAJA,SENTINEL,sentinel2,S2,S2A,S2B,L2,L2B,SNOW",OPTICAL,proprietary,SENTINEL2 snow product,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,available,, -S2_MSI_L2B_MAJA_WATER,A description of the Land Water Quality data distributed by Theia is available at https://theia.cnes.fr/atdistrib/documents/THEIA-ST-411-0477-CNES_01-03_Format_Specification_of_OBS2CO_WaterColor_Products.pdf ,MSI,SENTINEL2,"S2A,S2B",L2,"MSI,MAJA,SENTINEL,sentinel2,S2,S2A,S2B,L2,L2B,WATER",OPTICAL,proprietary,SENTINEL2 L2B-WATER,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,available,, -S2_MSI_L3A_WASP,"The Level-3A product provides a monthly synthesis of surface reflectances from Theia's L2A products. The synthesis is based on a weighted arithmetic mean of clear observations. The data processing is produced by WASP (Weighted Average Synthesis Processor), by MUSCATE data center at CNES, in the framework of THEIA data center. The full description of the product format is available at https://theia.cnes.fr/atdistrib/documents/THEIA-ST-411-0419-CNES_01-04_Format_Specification_of_MUSCATE_Level-3A_Products-signed.pdf ",MSI,SENTINEL2,"S2A,S2B",L3,"MSI,SENTINEL,sentinel2,S2,S2A,S2B,L3,L3A,WASP",OPTICAL,proprietary,SENTINEL2 Level-3A,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,available,, -S3_EFR,,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,EFR",OPTICAL,proprietary,SENTINEL3 EFR,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_ERR,,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,ERR",OPTICAL,proprietary,SENTINEL3 ERR,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_LAN,LAN or SR_2_LAN___ (peps),SRAL,SENTINEL3,"S3A,S3B",L2,"SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,LAN",RADAR,proprietary,SENTINEL3 SRAL Level-2 LAN,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_OLCI_L2LFR,"The OLCI Level-2 Water Full Resolution (OL_2_WFR) products contain water and atmospheric geophysical products at Full resolution with a spatial sampling of approximately 300 m. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WFR,WFR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Full Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_OLCI_L2LRR,"The OLCI Level-2 Land Reduced Resolution (OL_2_LRR) products contain land and atmospheric geophysical products at Reduced resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-land ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2LRR,LRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Land Reduced Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_OLCI_L2WFR,"The OLCI Level-2 Water Full Resolution (OL_2_WRR) products contain water and atmospheric geophysical products at Full resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WRR,WRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Full Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,,,available,,, -S3_OLCI_L2WRR,"The OLCI Level-2 Water Reduced Resolution (OL_2_WRR) products contain water and atmospheric geophysical products at Reduced resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WRR,WRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Reduced Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,,,available,,, -S3_RAC,Sentinel 3 OLCI products output during Radiometric Calibration mode ,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,L2,RAC",OPTICAL,proprietary,SENTINEL3 RAC,2016-02-16T00:00:00Z,,,,,,,,,,,,,,,,available,,, -S3_SLSTR_L1RBT,"SLSTR Level-1 observation mode products consisting of full resolution, geolocated, co-located nadir and along track view, Top of Atmosphere (TOA) brightness temperatures (in the case of thermal IR channels) or radiances (in the case of visible, NIR and SWIR channels) from all SLSTR channels, and quality flags, pixel classification information and meteorological annotations ",SLSTR,SENTINEL3,"S3A,S3B",L1,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,L1RBT,RBT",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SLSTR_L2AOD,"The Copernicus NRT S3 AOD processor quantifies the abundance of aerosol particles and monitors their global distribution and long-range transport, at the scale of 9.5 x 9.5 km2. All observations are made available in less than three hours from the SLSTR observation sensing time. It is only applicable during daytime. NOTE: The SLSTR L2 AOD product is generated by EUMETSAT in NRT only. An offline (NTC) AOD product is generated from SYN data by ESA, exploiting the synergy between the SLSTR and OLCI instruments. ",SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2AOD,AOD",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 AOD,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,,,available,,, -S3_SLSTR_L2FRP,"The SLSTR Level-2 FRP product is providing one measurement data file, FRP_in.nc, with Fire Radiative Power (FRP) values and associated parameters generated for each fire detected over land and projected on the SLSTR 1 km grid. The fire detection is based on a mixed thermal band, combining S7 radiometric measurements and, for pixels associated with a saturated value of S7 (i.e. above 311 K), F1 radiometric measurements. ",SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2FRP,FRP",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 FRP,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SLSTR_L2LST,The SLSTR Level-2 LST product provides land surface parameters generated on the wide 1 km measurement grid. It contains measurement file with Land Surface Temperature (LST) values with associated parameters (LST parameters are computed and provided for each pixel (re-gridded or orphan) included in the 1 km measurement grid) ,SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2LST,LST",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 LST,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SLSTR_L2WST,The SLSTR Level-2 WST product provides land surface parameters generated on the wide 1 km measurement grid. It contains measurement file with Water Surface Temperature (WST) values with associated parameters (WST parameters are computed and provided for each pixel (re-gridded or orphan) included in the 1 km measurement grid) ,SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WST,WST",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 WST,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,,,available,,, -S3_SRA,,SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SRA_A,"A Level 1A SRAL product contains one ""measurement data file"" containing the L1A measurements parameters: ECHO_SAR_Ku: L1A Tracking measurements (sorted and calibrated) in SAR mode - Ku-band (80-Hz) ECHO_PLRM: L1A Tracking measurements (sorted and calibrated) in pseudo-LRM mode - Ku and C bands (80-Hz) ",SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1 SRA_A,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SRA_BS,"A Level 1B-S SRAL product contains one ""measurement data file"" containing the L1b measurements parameters: ECHO_SAR_Ku : L1b Tracking measurements in SAR mode - Ku band (20-Hz) as defined in the L1b MEAS product completed with SAR expert information ECHO_PLRM : L1b Tracking measurements in pseudo-LRM mode - Ku and C bands (20-Hz) as defined in the L1b MEAS product ",SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1 SRA_BS,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SY_AOD,"The Level-2 SYN AOD product (SY_2_AOD) is produced by a dedicated processor including the whole SYN L1 processing module and a global synergy level 2 processing module retrieving, over land and sea, aerosol optical thickness. The resolution of this product is wider than classic S3 products, as the dataset are provided on a 4.5 kmĀ² resolution ",SYNERGY,SENTINEL3,"S3A,S3B",L2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,AOD","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 AOD,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,,,available,,, -S3_SY_SYN,"The Level-2 SYN product (SY_2_SYN) is produced by the Synergy Level-1/2 SDR software and contains surface reflectance and aerosol parameters over land. All measurement datasets are provided on the OLCI image grid, similar to the one included in the OLCI L1b product. Some sub-sampled annotations and atmospheric datasets are provided on the OLCI tie-points grid. Several associated variables are also provided in annotation data files. ",SYNERGY,SENTINEL3,"S3A,S3B",L2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,SYN","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 SYN,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SY_V10,"The Level-2 VG1 and V10 SYN products (SY_2_VG1 and SY_2_V10 respectively) are produced by the SYNERGY Level-2 processor and contain 1 km VEGETATION-like product, 1 and 10 days synthesis surface reflectances and NDVI. The product grid and the four spectral bands are similar to the SYN Level-2 VGP product. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2W,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,V10","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 V10,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SY_VG1,"The Level-2 VG1 and V10 SYN products (SY_2_VG1 and SY_2_V10 respectively) are produced by the SYNERGY Level-2 processor and contain 1 km VEGETATION-like product, 1 and 10 days synthesis surface reflectances and NDVI. The product grid and the four spectral bands are similar to the SYN Level-2 VGP product. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,VG1","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 VG1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_SY_VGP,"The Level-2 VGP SYN product (SY_2_VGP) is produced by the Global Synergy Level-1/2 software and contains 1 km VEGETATION-like product TOA reflectances. The ""1 km VEGETATION-like product"" label means that measurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km. This product is restricted in longitude, including only filled ones. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,VGP","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 VGP,2016-02-16T00:00:00Z,,,,,available,available,,,,,,available,available,,,available,,, -S3_WAT,,SRAL,SENTINEL3,"S3A,S3B",L2,"SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,WAT",RADAR,proprietary,SENTINEL3 SRAL Level-2 WAT,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,,,available,,, -S5P_L1B_IR_SIR,"Solar irradiance spectra for the SWIR bands (band 7 and band 8). TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,IR,SIR,SWIR,Irradiances",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Irradiances for the SWIR bands,2017-10-13T00:00:00Z,,,,,,available,,,,,,available,,,,,,, -S5P_L1B_IR_UVN,"Solar irradiance spectra for the UVN bands (band 1 through band 6). TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,IR,UVN,Irradiances",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Irradiances for the UVN bands,2017-10-13T00:00:00Z,,,,,,available,,,,,,available,,,,,,, -S5P_L1B_RA_BD1,"Sentinel-5 Precursor Level 1B Radiances for spectral band 1. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD1,BAND1,B01",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 1,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD2,"Sentinel-5 Precursor Level 1B Radiances for spectral band 2. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD2,BAND2,B02",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 2,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD3,"Sentinel-5 Precursor Level 1B Radiances for spectral band 3. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD3,BAND3,B03",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 3,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD4,"Sentinel-5 Precursor Level 1B Radiances for spectral band 4. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD4,BAND4,B04",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 4,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD5,"Sentinel-5 Precursor Level 1B Radiances for spectral band 5. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD5,BAND5,B05",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 5,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD6,"Sentinel-5 Precursor Level 1B Radiances for spectral band 6. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD6,BAND6,B06",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 6,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD7,"Sentinel-5 Precursor Level 1B Radiances for spectral band 7. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD7,BAND7,B07",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 7,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L1B_RA_BD8,"Sentinel-5 Precursor Level 1B Radiances for spectral band 8. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD8,BAND8,B08",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 8,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_AER_AI,"TROPOMI aerosol index is referred to as the Ultraviolet Aerosol Index (UVAI). The relatively simple calculation of the Aerosol Index is based on wavelength dependent changes in Rayleigh scattering in the UV spectral range where ozone absorption is very small. UVAI can also be calculated in the presence of clouds so that daily, global coverage is possible. This is ideal for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,AER,AI,Ultraviolet,Aerosol,Index",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ultraviolet Aerosol Index,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_AER_LH,"The TROPOMI Aerosol Layer Height product focuses on retrieval of vertically localised aerosol layers in the free troposphere, such as desert dust, biomass burning aerosol, or volcanic ash plumes. The height of such layers is retrieved for cloud-free conditions. Height information for aerosols in the free troposphere is particularly important for aviation safety. Scientific applications include radiative forcing studies, long-range transport modelling and studies of cloud formation processes. Aerosol height information also helps to interpret the UV Aerosol Index (UVAI) in terms of aerosol absorption as the index is strongly height-dependent. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,AER,LH,Aerosol,Layer,Height",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Aerosol Layer Height,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_CH4,"Methane (CH4) is, after carbon dioxide (CO2), the most important contributor to the anthropogenically enhanced greenhouse effect. Roughly three-quarters of methane emissions are anthropogenic and as such it is important to continue the record of satellite-based measurements. TROPOMI aims at providing CH4 column concentrations with high sensitivity to the Earth's surface, good spatio/temporal coverage, and sufficient accuracy to facilitate inverse modelling of sources and sinks. The output product consists of the retrieved methane column and a row vector referred to as the column averaging kernel A. The column averaging kernel describes how the retrieved column relates to the true profile and should be used in validation exercises (when possible) or use of the product in source/sink inverse modelling. The output product also contains altitude levels of the layer interfaces to which the column averaging kernel corresponds. Additional output for Level-2 data products: viewing geometry, precision of retrieved methane, residuals of the fit, quality flags (cloudiness, terrain roughness etc.) and retrieved albedo and aerosol properties. The latter properties are required for a posteriori filtering and for estimation of total retrieval error. The Sentinel-5 Precursor mission flies in loose formation (about 3.5 - 5 minutes behind) with the S-NPP (SUOMI-National Polar-orbiting Partnership) mission to use VIIRS (Visible Infrared Imaging Radiometer Suite) cloud information to select cloud free TROPOMI pixels for high quality methane retrieval. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CH4,Methane",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Methane,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_CLOUD,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves operationally the most important quantities for cloud correction of satellite trace gas retrievals: cloud fraction, cloud optical thickness (albedo), and cloud-top pressure (height). Cloud parameters from TROPOMI are not only used for enhancing the accuracy of trace gas retrievals, but also to extend the satellite data record of cloud information derived from oxygen A-band measurements initiated with GOME. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CLOUD",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Cloud,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_CO,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves the CO global abundance exploiting clear-sky and cloudy-sky Earth radiance measurements in the 2.3 Āµm spectral range of the shortwave infrared (SWIR) part of the solar spectrum. TROPOMI clear sky observations provide CO total columns with sensitivity to the tropospheric boundary layer. For cloudy atmospheres, the column sensitivity changes according to the light path. The TROPOMI CO retrieval uses the same method employed by SCIAMACHY. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CO,Carbon,Monoxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Carbon Monoxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_HCHO,"Formaldehyde is an intermediate gas in almost all oxidation chains of Non-Methane Volatile Organic Compounds (NMVOC), leading eventually to CO2. NMVOCs are, together with NOx, CO and CH4, among the most important precursors of tropospheric O3. The major HCHO source in the remote atmosphere is CH4 oxidation. Over the continents, the oxidation of higher NMVOCs emitted from vegetation, fires, traffic and industrial sources results in important and localised enhancements of the HCHO levels. In addition to the main product results, such as HCHO slant column, vertical column and air mass factor, the level 2 data files contain several additional parameters and diagnostic information. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,HCHO,Formaldehyde",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Formaldehyde,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_NO2,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves operationally tropospheric and stratospheric NO2 column products. The TROPOMI NO2 data products pose an improvement over previous NO2 data sets, particularly in their unprecedented spatial resolution, but also in the separation of the stratospheric and tropospheric contributions of the retrieved slant columns, and in the calculation of the air-mass factors used to convert slant to total columns. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NO2,Nitrogen,Dioxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Nitrogen Dioxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_NP_BD3,"S5P-NPP Cloud for spectral band 3. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD3,B03,BAND3",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 3,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_NP_BD6,"S5P-NPP Cloud for spectral band 6. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD6,B06,BAND6",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 6,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_NP_BD7,"S5P-NPP Cloud for spectral band 7. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD7,B07,BAND7",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 7,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_O3,"Ozone (O3) is of crucial importance for the equilibrium of the Earth's atmosphere. In the stratosphere, the ozone layer shields the biosphere from dangerous solar ultraviolet radiation. In the troposphere, it acts as an efficient cleansing agent, but at high concentration it also becomes harmful to the health of humans, animals, and vegetation. Ozone is also an important greenhouse-gas contributor to ongoing climate change. These products are provided in NetCDF-CF format and contain total ozone, ozone temperature, and error information including averaging kernels. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,Ozone",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ozone,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_O3_PR,"Retrieved ozone profiles are used to monitor the evolution of stratospheric and tropospheric ozone. Such monitoring is important as the ozone layer protects life on Earth against harmful UV radiation. The ozone layer is recovering from depletion due to manmade Chlorofluorocarbons (CFCs). Tropospheric ozone is toxic and it plays an important role in tropospheric chemistry. Also, ozone is a greenhouse gas and is therefore also relevant for climate change. The main parameters in the file are the retrieved ozone profile at 33 levels and the retrieved sub-columns of ozone in 6 layers. In addition, the total ozone column and tropospheric ozone columns are provided. For the ozone profile, the precision and smoothing errors, the a-priori profile and the averaging kernel are also provided. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,PR,Ozone,Profile",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ozone Profile,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -S5P_L2_O3_TCL,"Ozone in the tropical troposphere plays various important roles. The intense UV radiation and high humidity in the tropics stimulate the formation of the hydroxyl radical (OH) by the photolysis of ozone. OH is the most important oxidant in the troposphere because it reacts with virtually all trace gases, such as CO, CH4 and other hydrocarbons. The tropics are also characterized by large emissions of nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons, both from natural and anthropogenic sources. Ozone that is formed over regions where large amounts of these ozone precursors are emitted, can be transported over great distances and affects areas far from the source. The TROPOMI tropospheric ozone product is a level-2c product that represents three day averaged tropospheric ozone columns on a 0.5Ā° by 1Ā° latitude-longitude grid for the tropical region between 20Ā°N and 20Ā°S. The TROPOMI tropospheric ozone column product uses the TROPOMI Level-2 total OZONE and CLOUD products as input. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,TCL,Tropospheric,Ozone",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Tropospheric Ozone,2017-10-13T00:00:00Z,,,,,,available,,,,,,available,,,,,,, -S5P_L2_SO2,"Sulphur dioxide (SO2) enters the Earth's atmosphere through both natural (~30%) and anthropogenic processes (~70%). It plays a role in chemistry on a local and global scale and its impact ranges from short term pollution to effects on climate. Beside the total column of SO2, enhanced levels of SO2 are flagged within the products. The recognition of enhanced SO2 values is essential in order to detect and monitor volcanic eruptions and anthropogenic pollution sources. Volcanic SO2 emissions may also pose a threat to aviation, along with volcanic ash. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,SO2,Sulphur,Dioxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Sulphur Dioxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,available,available,,,,,, -SPOT5_SPIRIT,SPOT 5 stereoscopic survey of Polar Ice. ,,SPOT5,SPOT5,L1A,"SPOT,SPOT5,L1A",OPTICAL,proprietary,Spot 5 SPIRIT,2002-05-04T00:00:00Z,,,,,,,,,,,,,,,,,available,, -SPOT_SWH,The Spot World Heritage (SWH) programme objective is the free availability for non-commercial use of orthorectified products derived from multispectral images of more than 5 years old from the Spot 1-5 satellites family. More informations on https://www.theia-land.fr/en/product/spot-world-heritage/ ,,SPOT1-5,SPOT1-5,L1C,"SPOT,SPOT1,SPOT2,SPOT3,SPOT4,SPOT5,L1C",OPTICAL,proprietary,Spot World Heritage,1986-02-22T00:00:00Z,,,,,,,,,,,,,,,,,available,, -SPOT_SWH_OLD,Spot world heritage Old format. ,,SPOT1-5,SPOT1-5,L1C,"SPOT,SPOT1,SPOT2,SPOT3,SPOT4,SPOT5,L1C",OPTICAL,proprietary,Spot World Heritage,1986-02-22T00:00:00Z,,,,,,,,,,,,,,,,,available,, -TIGGE_CF_SFC,TIGGE (THORPEX Interactive Grand Global Ensemble) Surface Control forecast from ECMWF ,,TIGGE,TIGGE,,"THORPEX,TIGGE,CF,SFC,ECMWF",ATMOSPHERIC,proprietary,TIGGE ECMWF Surface Control forecast,2003-01-01T00:00:00Z,,,,,,,,,,available,,,,,,,,, -VENUS_L1C,A light description of Venus L1 data is available at http://www.cesbio.ups-tlse.fr/multitemp/?page_id=12984 ,,VENUS,VENUS,L1C,"VENUS,L1,L1C",OPTICAL,proprietary,Venus Level1-C,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,available,, -VENUS_L2A_MAJA,"Level2 products provide surface reflectances after atmospheric correction, along with masks of clouds and their shadows. Data is processed by MAJA (before called MACCS) for THEIA land data center. ",,VENUS,VENUS,L2A,"VENUS,L2,L2A",OPTICAL,proprietary,Venus Level2-A,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,available,, -VENUS_L3A_MAJA,,,VENUS,VENUS,L3A,"VENUS,L3,L3A",OPTICAL,proprietary,Venus Level3-A,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,available,, +product type,abstract,instrument,platform,platformSerialIdentifier,processingLevel,keywords,sensorType,license,title,missionStartDate,astraea_eod,aws_eos,cop_ads,cop_cds,cop_dataspace,creodias,earth_search,earth_search_cog,earth_search_gcs,ecmwf,hydroweb_next,meteoblue,mundi,onda,peps,planetary_computer,sara,theia,usgs,usgs_satapi_aws +CAMS_EAC4,CAMS (Copernicus Atmosphere Monitoring Service) ECMWF Atmospheric Composition Reanalysis 4 from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Reanalysis,CAMS,EAC4,ADS,ECMWF",ATMOSPHERIC,proprietary,CAMS ECMWF Atmospheric Composition Reanalysis 4,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,,, +CAMS_GACF_AOT,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Aerosol Optical Thickness from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,AOT,ADS",ATMOSPHERIC,proprietary,CAMS GACF Aerosol Optical Thickness,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,,, +CAMS_GACF_MR,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Mixing Ratios from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,MR,ADS",ATMOSPHERIC,proprietary,CAMS GACF Mixing Ratios,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,,, +CAMS_GACF_RH,CAMS (Copernicus Atmosphere Monitoring Service) Global Atmospheric Composition Forecast of Relative Humidity from Copernicus ADS ,,CAMS,CAMS,,"Copernicus,Atmosphere,Atmospheric,Forecast,CAMS,GACF,RH,ADS",ATMOSPHERIC,proprietary,CAMS GACF Relative Humidity,2003-01-01T00:00:00Z,,,available,,,,,,,,,,,,,,,,, +CBERS4_AWFI_L2,"China-Brazil Earth Resources Satellite, CBERS-4 AWFI camera Level-2 product. System corrected images, expect some translation error. ",AWFI,CBERS,CBERS-4,L2,"AWFI,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 AWFI Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_AWFI_L4,"China-Brazil Earth Resources Satellite, CBERS-4 AWFI camera Level-4 product. Orthorectified with ground control points. ",AWFI,CBERS,CBERS-4,L4,"AWFI,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 AWFI Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_MUX_L2,"China-Brazil Earth Resources Satellite, CBERS-4 MUX camera Level-2 product. System corrected images, expect some translation error. ",MUX,CBERS,CBERS-4,L2,"MUX,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 MUX Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_MUX_L4,"China-Brazil Earth Resources Satellite, CBERS-4 MUX camera Level-4 product. Orthorectified with ground control points. ",MUX,CBERS,CBERS-4,L4,"MUX,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 MUX Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_PAN10M_L2,"China-Brazil Earth Resources Satellite, CBERS-4 PAN10M camera Level-2 product. System corrected images, expect some translation error. ",PAN10M,CBERS,CBERS-4,L2,"PAN10M,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 PAN10M Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_PAN10M_L4,"China-Brazil Earth Resources Satellite, CBERS-4 PAN10M camera Level-4 product. Orthorectified with ground control points. ",PAN10M,CBERS,CBERS-4,L4,"PAN10M,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 PAN10M Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_PAN5M_L2,"China-Brazil Earth Resources Satellite, CBERS-4 PAN5M camera Level-2 product. System corrected images, expect some translation error. ",PAN5M,CBERS,CBERS-4,L2,"PAN5M,CBERS,CBERS-4,L2",OPTICAL,proprietary,CBERS-4 PAN5M Level-2,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +CBERS4_PAN5M_L4,"China-Brazil Earth Resources Satellite, CBERS-4 PAN5M camera Level-4 product. Orthorectified with ground control points. ",PAN5M,CBERS,CBERS-4,L4,"PAN5M,CBERS,CBERS-4,L4",OPTICAL,proprietary,CBERS-4 PAN5M Level-4,2014-12-07T00:00:00Z,,available,,,,,,,,,,,,,,,,,, +ERA5_SL,"ERA5 ECMWF climate reanalysis data on many atmospheric, land-surface and sea-state parameters together with estimates of uncertainty. Hourly data on Single Levels from 1959 to present. ",,ERA5,ERA5,,"ECMWF,Reanalysis,ERA5,CDS,Atmospheric,land,sea,hourly,single,levels",ATMOSPHERIC,proprietary,ERA5 Hourly data on Single Levels,1959-01-01T00:00:00Z,,,,available,,,,,,,,,,,,,,,, +L57_REFLECTANCE,"Landsat 5,7,8 L2A data (old format) distributed by Theia (2014 to 2017-03-20) using MUSCATE prototype, Lamber 93 projection. ","OLI,TIRS",LANDSAT,"L5,L7,L8",L2A,"OLI,TIRS,LANDSAT,L5,L7,L8,L2,L2A,MUSCATE",OPTICAL,proprietary,"Landsat 5,7,8 Level-2A",2014-01-01T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +L8_OLI_TIRS_C1L1,Landsat 8 Operational Land Imager and Thermal Infrared Sensor Collection 1 Level-1 products. Details at https://landsat.usgs.gov/sites/default/files/documents/LSDS-1656_Landsat_Level-1_Product_Collection_Definition.pdf ,"OLI,TIRS",LANDSAT8,L8,L1,"OLI,TIRS,LANDSAT,LANDSAT8,L8,L1,C1,COLLECTION1",OPTICAL,proprietary,Landsat 8 Level-1,2013-02-11T00:00:00Z,,available,,,,,available,,available,,,,,available,,,,,, +L8_REFLECTANCE,"Landsat 8 L2A data distributed by Theia since 2017-03-20 using operational version of MUSCATE, UTM projection, and tiled using Sentinel-2 tiles. ","OLI,TIRS",LANDSAT8,L8,L2A,"OLI,TIRS,LANDSAT,LANDSAT8,L8,L2,L2A,MUSCATE",OPTICAL,proprietary,Landsat 8 Level-2A,2013-02-11T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +LANDSAT_C2L1,The Landsat Level-1 product is a top of atmosphere product distributed as scaled and calibrated digital numbers. ,"OLI,TIRS",LANDSAT,"L1,L2,L3,L4,L5,L6,L7,L8",L1,"OLI,TIRS,LANDSAT,L1,L2,L3,L4,L5,L6,L7,L8,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-1 Product,1972-07-25T00:00:00Z,available,,,,,,,,,,,,,,,available,,,available,available +LANDSAT_C2L2,Collection 2 Landsat OLI/TIRS Level-2 Science Products (L2SP) include Surface Reflectance and Surface Temperature scene-based products. ,"OLI,TIRS",LANDSAT,"L8,L9",L1,"OLI,TIRS,LANDSAT,L8,L9,L2,C2,COLLECTION2",OPTICAL,proprietary,Landsat OLI and TIRS Collection 2 Level-2 Science Products 30-meter multispectral data.,2013-02-11T00:00:00Z,,,,,,,,,,,,,,,,available,,,available, +LANDSAT_C2L2ALB_BT,"The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin. ","OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,BT,Brightness,Temperature,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Top of Atmosphere Brightness Temperature (BT) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +LANDSAT_C2L2ALB_SR,The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,SR,Surface,Reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Surface Reflectance (SR) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +LANDSAT_C2L2ALB_ST,The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K). ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,Surface,Temperature,ST,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Surface Temperature (ST) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +LANDSAT_C2L2ALB_TA,The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,L2ALB,TA,Top,Atmosphere,Reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 Albers Top of Atmosphere (TA) Reflectance Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +LANDSAT_C2L2_SR,The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor. ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,SR,surface,reflectance,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 UTM Surface Reflectance (SR) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +LANDSAT_C2L2_ST,The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K). ,"OLI,TIRS",LANDSAT,"L4,L5,L7,L8",L2,"OLI,TIRS,LANDSAT,L4,L5,L7,L8,L2,ST,surface,temperature,C2,COLLECTION2",OPTICAL,proprietary,Landsat Collection 2 Level-2 UTM Surface Temperature (ST) Product,1982-08-22T00:00:00Z,,,,,,,,,,,,,,,,,,,,available +MODIS_MCD43A4,"The MODerate-resolution Imaging Spectroradiometer (MODIS) Reflectance product MCD43A4 provides 500 meter reflectance data adjusted using a bidirectional reflectance distribution function (BRDF) to model the values as if they were taken from nadir view. The MCD43A4 product contains 16 days of data provided in a level-3 gridded data set in Sinusoidal projection. Both Terra and Aqua data are used in the generation of this product, providing the highest probability for quality assurance input data. It is designated with a shortname beginning with MCD, which is used to refer to 'combined' products, those comprised of data using both Terra and Aqua. ",MODIS,Terra+Aqua,EOS AM-1+PM-1,L3,"MODIS,Terra,Aqua,EOS,AM-1+PM-1,L3,MCD43A4",OPTICAL,proprietary,MODIS MCD43A4,2000-03-05T00:00:00Z,available,available,,,,,,,,,,,,,,available,,,, +NAIP,"The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This ""leaf-on"" imagery and typically ranges from 60 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format. NAIP data is delivered at the state level; every year, a number of states receive updates, with an overall update cycle of two or three years. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP imagery is formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. ",film and digital cameras,National Agriculture Imagery Program,NAIP,N/A,"film,digital,cameras,Agriculture,NAIP",OPTICAL,proprietary,National Agriculture Imagery Program,2003-01-01T00:00:00Z,available,available,,,,,,,,,,,,,,available,,,, +NEMSAUTO_TCDC,Total cloud cover from NOAAmodel Environment Monitoring System (NEMS) automatic domain switch. NEMSAUTO is the automatic delivery of the highest resolution meteoblue model available for any requested period of time and location. The NEMS model family are improved NMM successors (operational since 2013). NEMS is a multi-scale model (used from global down to local domains) and significantly improves cloud-development and precipitation forecast. Note that Automatic domain switching is only supported for multi point queries. Support for polygons may follow later. ,,NEMSAUTO,NEMSAUTO,,"meteoblue,NEMS,NEMSAUTO,CLOUD,COVER,TOTAL,TCDC,DAILY,MEAN",ATMOSPHERIC,proprietary,NEMSAUTO Total Cloud Cover daily mean,1984-01-01T00:00:00Z,,,,,,,,,,,,available,,,,,,,, +NEMSGLOBAL_TCDC,Total cloud cover from NOAAmodel Environment Monitoring System (NEMS) global model. NEMSGLOBAL has 30km spatial and 1h temporal resolutions and produces seamless datasets from 1984 to 7 days ahead. ,,NEMSGLOBAL,NEMSGLOBAL,,"meteoblue,NEMS,NEMSGLOBAL,CLOUD,COVER,TOTAL,TCDC,DAILY,MEAN",ATMOSPHERIC,proprietary,NEMSGLOBAL Total Cloud Cover daily mean,1984-01-01T00:00:00Z,,,,,,,,,,,,available,,,,,,,, +OSO,An overview of OSO Land Cover data is given on https://www.theia-land.fr/en/ceslist/land-cover-sec/ and the specific description of OSO products is available on https://www.theia-land.fr/product/carte-doccupation-des-sols-de-la-france-metropolitaine/ ,,,,L3B,"L3B,OSO,land,cover",,proprietary,OSO Land Cover,2016-01-01T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +PLD_BUNDLE,"Pleiades Bundle (Pan, XS)",PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,BUNDLE,Pan,Xs",OPTICAL,proprietary,Pleiades Bundle,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +PLD_PAN,Pleiades Panchromatic (Pan),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,PAN,Panchromatic",OPTICAL,proprietary,Pleiades Panchromatic,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +PLD_PANSHARPENED,Pleiades Pansharpened (Pan+XS),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,PANSHARPENED,Pan,Xs",OPTICAL,proprietary,Pleiades Pansharpened,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +PLD_XS,Pleiades Multispectral (XS),PHR,PLEIADES,"P1A,P1B",PRIMARY,"PHR,PLEIADES,P1A,P1B,PRIMARY,PLD,XS,Multispectral",OPTICAL,proprietary,Pleiades Multispectral,2011-12-17T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +S1_SAR_GRD,"Level-1 Ground Range Detected (GRD) products consist of focused SAR data that has been detected, multi-looked and projected to ground range using an Earth ellipsoid model. Phase information is lost. The resulting product has approximately square spatial resolution pixels and square pixel spacing with reduced speckle at the cost of worse spatial resolution. GRD products can be in one of three resolutions: Full Resolution (FR), High Resolution (HR), Medium Resolution (MR). The resolution is dependent upon the amount of multi-looking performed. Level-1 GRD products are available in MR and HR for IW and EW modes, MR for WV mode and MR, HR and FR for SM mode. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L1,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L1,GRD,SAFE",RADAR,proprietary,SENTINEL1 Level-1 Ground Range Detected,2014-04-03T00:00:00Z,available,available,,,available,available,,,,,,,available,available,available,available,available,,, +S1_SAR_OCN,"Level-2 OCN products include components for Ocean Swell spectra (OSW) providing continuity with ERS and ASAR WV and two new components: Ocean Wind Fields (OWI) and Surface Radial Velocities (RVL). The OSW is a two-dimensional ocean surface swell spectrum and includes an estimate of the wind speed and direction per swell spectrum. The OSW is generated from Stripmap and Wave modes only. For Stripmap mode, there are multiple spectra derived from internally generated Level-1 SLC images. For Wave mode, there is one spectrum per vignette. The OWI is a ground range gridded estimate of the surface wind speed and direction at 10 m above the surface derived from internally generated Level-1 GRD images of SM, IW or EW modes. The RVL is a ground range gridded difference between the measured Level-2 Doppler grid and the Level-1 calculated geometrical Doppler. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L2,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L2,OCN,SAFE",RADAR,proprietary,SENTINEL1 Level-2 OCN,2014-04-03T00:00:00Z,,,,,available,available,,,,,,,available,available,available,,available,,, +S1_SAR_RAW,"The SAR Level-0 products consist of the sequence of Flexible Dynamic Block Adaptive Quantization (FDBAQ) compressed unfocused SAR raw data. For the data to be usable, it will need to be decompressed and processed using a SAR processor. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L0,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L0,RAW,SAFE",RADAR,proprietary,SENTINEL1 SAR Level-0,2014-04-03T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S1_SAR_SLC,"Level-1 Single Look Complex (SLC) products consist of focused SAR data geo-referenced using orbit and attitude data from the satellite and provided in zero-Doppler slant-range geometry. The products include a single look in each dimension using the full transmit signal bandwidth and consist of complex samples preserving the phase information. SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification ",SAR,SENTINEL1,"S1A,S1B",L1,"SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L1,SLC,SAFE",RADAR,proprietary,SENTINEL1 Level-1 Single Look Complex,2014-04-03T00:00:00Z,,,,,available,available,,,,,,,available,available,available,,available,,, +S2_MSI_L1C,"The Level-1C product is composed of 100x100 km2 tiles (ortho-images in UTM/WGS84 projection). It results from using a Digital Elevation Model (DEM) to project the image in cartographic geometry. Per-pixel radiometric measurements are provided in Top Of Atmosphere (TOA) reflectances along with the parameters to transform them into radiances. Level-1C products are resampled with a constant Ground Sampling Distance (GSD) of 10, 20 and 60 meters depending on the native resolution of the different spectral bands. In Level-1C products, pixel coordinates refer to the upper left corner of the pixel. Level-1C products will additionally include Cloud Masks and ECMWF data (total column of ozone, total column of water vapour and mean sea level pressure). SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/data-formats ",MSI,SENTINEL2,"S2A,S2B",L1,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L1,L1C,SAFE",OPTICAL,proprietary,SENTINEL2 Level-1C,2015-06-23T00:00:00Z,available,available,,,available,available,available,,available,,,,available,available,available,,available,,available, +S2_MSI_L2A,"The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance images derived from the associated Level-1C products. Each Level-2A product is composed of 100x100 km2 tiles in cartographic geometry (UTM/WGS84 projection). SAFE formatted product, see https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/data-formats ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,SAFE",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,available,available,,,available,available,available,,,,,,available,available,available,available,available,,, +S2_MSI_L2A_COG,"The Level-2A product provides Bottom Of Atmosphere (BOA) reflectance images derived from the associated Level-1C products. Each Level-2A product is composed of 100x100 km2 tiles in cartographic geometry (UTM/WGS84 projection). Product containing Cloud Optimized GeoTIFF images, without SAFE formatting. ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,COG",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,,,,,,,,available,,,,,,,,,,,, +S2_MSI_L2A_MAJA,"The level 2A products correct the data for atmospheric effects and detect the clouds and their shadows using MAJA. MAJA uses MUSCATE processing center at CNES, in the framework of THEIA land data center. Sentinel-2 level 1C data are downloaded from PEPS. The full description of the product format is available at https://theia.cnes.fr/atdistrib/documents/PSC-NT-411-0362-CNES_01_00_SENTINEL-2A_L2A_Products_Description.pdf ",MSI,SENTINEL2,"S2A,S2B",L2,"MSI,SENTINEL,SENTINEL2,S2,S2A,S2B,L2,L2A,MAJA",OPTICAL,proprietary,SENTINEL2 Level-2A,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +S2_MSI_L2B_MAJA_SNOW,The Theia snow product is derived from Sentinel-2 L2A images generated by Theia. It indicates the snow presence or absence on the land surface every fifth day if there is no cloud. The product is distributed by Theia as a raster file (8 bits GeoTIFF) of 20 m resolution and a vector file (Shapefile polygons). More details about the snow products description are available at http://www.cesbio.ups-tlse.fr/multitemp/?page_id=10748#en ,MSI,SENTINEL2,"S2A,S2B",L2,"MSI,MAJA,SENTINEL,sentinel2,S2,S2A,S2B,L2,L2B,SNOW",OPTICAL,proprietary,SENTINEL2 snow product,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +S2_MSI_L2B_MAJA_WATER,A description of the Land Water Quality data distributed by Theia is available at https://theia.cnes.fr/atdistrib/documents/THEIA-ST-411-0477-CNES_01-03_Format_Specification_of_OBS2CO_WaterColor_Products.pdf ,MSI,SENTINEL2,"S2A,S2B",L2,"MSI,MAJA,SENTINEL,sentinel2,S2,S2A,S2B,L2,L2B,WATER",OPTICAL,proprietary,SENTINEL2 L2B-WATER,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +S2_MSI_L3A_WASP,"The Level-3A product provides a monthly synthesis of surface reflectances from Theia's L2A products. The synthesis is based on a weighted arithmetic mean of clear observations. The data processing is produced by WASP (Weighted Average Synthesis Processor), by MUSCATE data center at CNES, in the framework of THEIA data center. The full description of the product format is available at https://theia.cnes.fr/atdistrib/documents/THEIA-ST-411-0419-CNES_01-04_Format_Specification_of_MUSCATE_Level-3A_Products-signed.pdf ",MSI,SENTINEL2,"S2A,S2B",L3,"MSI,SENTINEL,sentinel2,S2,S2A,S2B,L3,L3A,WASP",OPTICAL,proprietary,SENTINEL2 Level-3A,2015-06-23T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +S3_EFR,,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,EFR",OPTICAL,proprietary,SENTINEL3 EFR,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_ERR,,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,ERR",OPTICAL,proprietary,SENTINEL3 ERR,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_LAN,LAN or SR_2_LAN___ (peps),SRAL,SENTINEL3,"S3A,S3B",L2,"SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,LAN",RADAR,proprietary,SENTINEL3 SRAL Level-2 LAN,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_OLCI_L2LFR,"The OLCI Level-2 Water Full Resolution (OL_2_WFR) products contain water and atmospheric geophysical products at Full resolution with a spatial sampling of approximately 300 m. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WFR,WFR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Full Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_OLCI_L2LRR,"The OLCI Level-2 Land Reduced Resolution (OL_2_LRR) products contain land and atmospheric geophysical products at Reduced resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-land ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2LRR,LRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Land Reduced Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_OLCI_L2WFR,"The OLCI Level-2 Water Full Resolution (OL_2_WRR) products contain water and atmospheric geophysical products at Full resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WRR,WRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Full Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,available,,,available,,, +S3_OLCI_L2WRR,"The OLCI Level-2 Water Reduced Resolution (OL_2_WRR) products contain water and atmospheric geophysical products at Reduced resolution with a spatial sampling of approximately 1.2 km. The products are assumed to be computed in Near Real Time (NRT) (i.e. delivered to users less than 3 hours after acquisition), in Non-Time Critical (NTC) (i.e. within 1 month after acquisition) or in re-processed NTC. Details at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water ",OLCI,SENTINEL3,"S3A,S3B",L2,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WRR,WRR",OPTICAL,proprietary,SENTINEL3 OLCI Level-2 Water Reduced Resolution,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,available,,,available,,, +S3_RAC,Sentinel 3 OLCI products output during Radiometric Calibration mode ,OLCI,SENTINEL3,"S3A,S3B",L1,"OLCI,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,L2,RAC",OPTICAL,proprietary,SENTINEL3 RAC,2016-02-16T00:00:00Z,,,,,,,,,,,,,,,,,available,,, +S3_SLSTR_L1RBT,"SLSTR Level-1 observation mode products consisting of full resolution, geolocated, co-located nadir and along track view, Top of Atmosphere (TOA) brightness temperatures (in the case of thermal IR channels) or radiances (in the case of visible, NIR and SWIR channels) from all SLSTR channels, and quality flags, pixel classification information and meteorological annotations ",SLSTR,SENTINEL3,"S3A,S3B",L1,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L1,L1RBT,RBT",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SLSTR_L2AOD,"The Copernicus NRT S3 AOD processor quantifies the abundance of aerosol particles and monitors their global distribution and long-range transport, at the scale of 9.5 x 9.5 km2. All observations are made available in less than three hours from the SLSTR observation sensing time. It is only applicable during daytime. NOTE: The SLSTR L2 AOD product is generated by EUMETSAT in NRT only. An offline (NTC) AOD product is generated from SYN data by ESA, exploiting the synergy between the SLSTR and OLCI instruments. ",SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2AOD,AOD",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 AOD,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,,,,available,,, +S3_SLSTR_L2FRP,"The SLSTR Level-2 FRP product is providing one measurement data file, FRP_in.nc, with Fire Radiative Power (FRP) values and associated parameters generated for each fire detected over land and projected on the SLSTR 1 km grid. The fire detection is based on a mixed thermal band, combining S7 radiometric measurements and, for pixels associated with a saturated value of S7 (i.e. above 311 K), F1 radiometric measurements. ",SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2FRP,FRP",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 FRP,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SLSTR_L2LST,The SLSTR Level-2 LST product provides land surface parameters generated on the wide 1 km measurement grid. It contains measurement file with Land Surface Temperature (LST) values with associated parameters (LST parameters are computed and provided for each pixel (re-gridded or orphan) included in the 1 km measurement grid) ,SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2LST,LST",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 LST,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SLSTR_L2WST,The SLSTR Level-2 WST product provides land surface parameters generated on the wide 1 km measurement grid. It contains measurement file with Water Surface Temperature (WST) values with associated parameters (WST parameters are computed and provided for each pixel (re-gridded or orphan) included in the 1 km measurement grid) ,SLSTR,SENTINEL3,"S3A,S3B",L2,"SLSTR,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,L2WST,WST",ATMOSPHERIC,proprietary,SENTINEL3 SLSTR Level-2 WST,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,available,,,available,,, +S3_SRA,,SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SRA_A,"A Level 1A SRAL product contains one ""measurement data file"" containing the L1A measurements parameters: ECHO_SAR_Ku: L1A Tracking measurements (sorted and calibrated) in SAR mode - Ku-band (80-Hz) ECHO_PLRM: L1A Tracking measurements (sorted and calibrated) in pseudo-LRM mode - Ku and C bands (80-Hz) ",SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1 SRA_A,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SRA_BS,"A Level 1B-S SRAL product contains one ""measurement data file"" containing the L1b measurements parameters: ECHO_SAR_Ku : L1b Tracking measurements in SAR mode - Ku band (20-Hz) as defined in the L1b MEAS product completed with SAR expert information ECHO_PLRM : L1b Tracking measurements in pseudo-LRM mode - Ku and C bands (20-Hz) as defined in the L1b MEAS product ",SRAL,SENTINEL3,"S3A,S3B",L1,"SRA,SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L1",RADAR,proprietary,SENTINEL3 SRAL Level-1 SRA_BS,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SY_AOD,"The Level-2 SYN AOD product (SY_2_AOD) is produced by a dedicated processor including the whole SYN L1 processing module and a global synergy level 2 processing module retrieving, over land and sea, aerosol optical thickness. The resolution of this product is wider than classic S3 products, as the dataset are provided on a 4.5 kmĀ² resolution ",SYNERGY,SENTINEL3,"S3A,S3B",L2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,AOD","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 AOD,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,available,,,available,,, +S3_SY_SYN,"The Level-2 SYN product (SY_2_SYN) is produced by the Synergy Level-1/2 SDR software and contains surface reflectance and aerosol parameters over land. All measurement datasets are provided on the OLCI image grid, similar to the one included in the OLCI L1b product. Some sub-sampled annotations and atmospheric datasets are provided on the OLCI tie-points grid. Several associated variables are also provided in annotation data files. ",SYNERGY,SENTINEL3,"S3A,S3B",L2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,SYN","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 SYN,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SY_V10,"The Level-2 VG1 and V10 SYN products (SY_2_VG1 and SY_2_V10 respectively) are produced by the SYNERGY Level-2 processor and contain 1 km VEGETATION-like product, 1 and 10 days synthesis surface reflectances and NDVI. The product grid and the four spectral bands are similar to the SYN Level-2 VGP product. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2W,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,V10","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 V10,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SY_VG1,"The Level-2 VG1 and V10 SYN products (SY_2_VG1 and SY_2_V10 respectively) are produced by the SYNERGY Level-2 processor and contain 1 km VEGETATION-like product, 1 and 10 days synthesis surface reflectances and NDVI. The product grid and the four spectral bands are similar to the SYN Level-2 VGP product. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,VG1","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 VG1,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_SY_VGP,"The Level-2 VGP SYN product (SY_2_VGP) is produced by the Global Synergy Level-1/2 software and contains 1 km VEGETATION-like product TOA reflectances. The ""1 km VEGETATION-like product"" label means that measurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km. This product is restricted in longitude, including only filled ones. ",SYNERGY,SENTINEL3,"S3A,S3B",LEVEL-2,"SYNERGY,SY,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,VGP","OPTICAL,RADAR",proprietary,SENTINEL3 SYNERGY Level-2 VGP,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,available,available,,,available,,, +S3_WAT,,SRAL,SENTINEL3,"S3A,S3B",L2,"SRAL,SENTINEL,SENTINEL3,S3,S3A,S3B,L2,WAT",RADAR,proprietary,SENTINEL3 SRAL Level-2 WAT,2016-02-16T00:00:00Z,,,,,available,available,,,,,,,,available,,,available,,, +S5P_L1B_IR_SIR,"Solar irradiance spectra for the SWIR bands (band 7 and band 8). TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,IR,SIR,SWIR,Irradiances",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Irradiances for the SWIR bands,2017-10-13T00:00:00Z,,,,,,available,,,,,,,available,,,,,,, +S5P_L1B_IR_UVN,"Solar irradiance spectra for the UVN bands (band 1 through band 6). TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,IR,UVN,Irradiances",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Irradiances for the UVN bands,2017-10-13T00:00:00Z,,,,,,available,,,,,,,available,,,,,,, +S5P_L1B_RA_BD1,"Sentinel-5 Precursor Level 1B Radiances for spectral band 1. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD1,BAND1,B01",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 1,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD2,"Sentinel-5 Precursor Level 1B Radiances for spectral band 2. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD2,BAND2,B02",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 2,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD3,"Sentinel-5 Precursor Level 1B Radiances for spectral band 3. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD3,BAND3,B03",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 3,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD4,"Sentinel-5 Precursor Level 1B Radiances for spectral band 4. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD4,BAND4,B04",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 4,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD5,"Sentinel-5 Precursor Level 1B Radiances for spectral band 5. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD5,BAND5,B05",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 5,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD6,"Sentinel-5 Precursor Level 1B Radiances for spectral band 6. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD6,BAND6,B06",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 6,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD7,"Sentinel-5 Precursor Level 1B Radiances for spectral band 7. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD7,BAND7,B07",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 7,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L1B_RA_BD8,"Sentinel-5 Precursor Level 1B Radiances for spectral band 8. TROPOMI utilises a single telescope to form an image of the target area onto a rectangular slit that acts as the entrance slit of the spectrometer system. There are four different spectrometers, each with its own optics and detector: mediumwave ultraviolet (UV), longwave ultraviolet combined with visible (UVIS), near infrared (NIR), and shortwave infrared (SWIR). The spectrometers for UV, UVIS and NIR are jointly referred to as UVN. Radiation for the SWIR spectrometer is transferred by an optical relay part in the UVN system from the telescope to an interface position (the pupil stop) for the SWIR spectrometer. This is done because of the more stringent thermal requirements on the SWIR part of the instrument. Each of the detectors is divided in two halves, which yields a total of eight spectral bands. ",TROPOMI,SENTINEL5P,S5P,L1B,"SENTINEL,SENTINEL5P,S5P,L1,L1B,TROPOMI,RA,Radiances,BD8,BAND8,B08",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 1B Radiances for spectral band 8,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_AER_AI,"TROPOMI aerosol index is referred to as the Ultraviolet Aerosol Index (UVAI). The relatively simple calculation of the Aerosol Index is based on wavelength dependent changes in Rayleigh scattering in the UV spectral range where ozone absorption is very small. UVAI can also be calculated in the presence of clouds so that daily, global coverage is possible. This is ideal for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,AER,AI,Ultraviolet,Aerosol,Index",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ultraviolet Aerosol Index,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_AER_LH,"The TROPOMI Aerosol Layer Height product focuses on retrieval of vertically localised aerosol layers in the free troposphere, such as desert dust, biomass burning aerosol, or volcanic ash plumes. The height of such layers is retrieved for cloud-free conditions. Height information for aerosols in the free troposphere is particularly important for aviation safety. Scientific applications include radiative forcing studies, long-range transport modelling and studies of cloud formation processes. Aerosol height information also helps to interpret the UV Aerosol Index (UVAI) in terms of aerosol absorption as the index is strongly height-dependent. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,AER,LH,Aerosol,Layer,Height",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Aerosol Layer Height,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_CH4,"Methane (CH4) is, after carbon dioxide (CO2), the most important contributor to the anthropogenically enhanced greenhouse effect. Roughly three-quarters of methane emissions are anthropogenic and as such it is important to continue the record of satellite-based measurements. TROPOMI aims at providing CH4 column concentrations with high sensitivity to the Earth's surface, good spatio/temporal coverage, and sufficient accuracy to facilitate inverse modelling of sources and sinks. The output product consists of the retrieved methane column and a row vector referred to as the column averaging kernel A. The column averaging kernel describes how the retrieved column relates to the true profile and should be used in validation exercises (when possible) or use of the product in source/sink inverse modelling. The output product also contains altitude levels of the layer interfaces to which the column averaging kernel corresponds. Additional output for Level-2 data products: viewing geometry, precision of retrieved methane, residuals of the fit, quality flags (cloudiness, terrain roughness etc.) and retrieved albedo and aerosol properties. The latter properties are required for a posteriori filtering and for estimation of total retrieval error. The Sentinel-5 Precursor mission flies in loose formation (about 3.5 - 5 minutes behind) with the S-NPP (SUOMI-National Polar-orbiting Partnership) mission to use VIIRS (Visible Infrared Imaging Radiometer Suite) cloud information to select cloud free TROPOMI pixels for high quality methane retrieval. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CH4,Methane",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Methane,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_CLOUD,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves operationally the most important quantities for cloud correction of satellite trace gas retrievals: cloud fraction, cloud optical thickness (albedo), and cloud-top pressure (height). Cloud parameters from TROPOMI are not only used for enhancing the accuracy of trace gas retrievals, but also to extend the satellite data record of cloud information derived from oxygen A-band measurements initiated with GOME. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CLOUD",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Cloud,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_CO,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves the CO global abundance exploiting clear-sky and cloudy-sky Earth radiance measurements in the 2.3 Āµm spectral range of the shortwave infrared (SWIR) part of the solar spectrum. TROPOMI clear sky observations provide CO total columns with sensitivity to the tropospheric boundary layer. For cloudy atmospheres, the column sensitivity changes according to the light path. The TROPOMI CO retrieval uses the same method employed by SCIAMACHY. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,CO,Carbon,Monoxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Carbon Monoxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_HCHO,"Formaldehyde is an intermediate gas in almost all oxidation chains of Non-Methane Volatile Organic Compounds (NMVOC), leading eventually to CO2. NMVOCs are, together with NOx, CO and CH4, among the most important precursors of tropospheric O3. The major HCHO source in the remote atmosphere is CH4 oxidation. Over the continents, the oxidation of higher NMVOCs emitted from vegetation, fires, traffic and industrial sources results in important and localised enhancements of the HCHO levels. In addition to the main product results, such as HCHO slant column, vertical column and air mass factor, the level 2 data files contain several additional parameters and diagnostic information. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,HCHO,Formaldehyde",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Formaldehyde,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_NO2,"The TROPOMI instrument, single payload onboard Sentinel-5 Precursor, retrieves operationally tropospheric and stratospheric NO2 column products. The TROPOMI NO2 data products pose an improvement over previous NO2 data sets, particularly in their unprecedented spatial resolution, but also in the separation of the stratospheric and tropospheric contributions of the retrieved slant columns, and in the calculation of the air-mass factors used to convert slant to total columns. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NO2,Nitrogen,Dioxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Nitrogen Dioxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_NP_BD3,"S5P-NPP Cloud for spectral band 3. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD3,B03,BAND3",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 3,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_NP_BD6,"S5P-NPP Cloud for spectral band 6. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD6,B06,BAND6",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 6,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_NP_BD7,"S5P-NPP Cloud for spectral band 7. The S5P level 2 methane product is dependent on having information on cloud occurrence at spatial resolution finer than that achievable from TROPOMI itself. This information is also useful for other purposes, including assessing the influence of cloud on other L2 products and issues related to spatial co-registration. A level 2 auxiliary product was therefore developed to describe cloud in the TROPOMI field of view (FOV), using co-located observations of VIIRS (Visible Infra-red Imaging Radiometer Suite) on the U.S. S-NPP (Suomi - National Polar-orbiting Partnership). S5P flies in a so-called loose formation with the S-NPP with a temporal separation between them of less than 5 minutes. The main information contained in the S5P-NPP product is: 1. A statistical summary for each S5P FOV of the NPP-VIIRS L2 Cloud Mask (VCM). 2. The mean and standard deviation of the sun-normalised radiance in a number of VIIRS moderate resolution bands. This information is provided for three S5P spectral bands (to account for differences in spatial sampling). ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,NP,NPP,Cloud,BD7,B07,BAND7",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 NPP Cloud for band 7,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_O3,"Ozone (O3) is of crucial importance for the equilibrium of the Earth's atmosphere. In the stratosphere, the ozone layer shields the biosphere from dangerous solar ultraviolet radiation. In the troposphere, it acts as an efficient cleansing agent, but at high concentration it also becomes harmful to the health of humans, animals, and vegetation. Ozone is also an important greenhouse-gas contributor to ongoing climate change. These products are provided in NetCDF-CF format and contain total ozone, ozone temperature, and error information including averaging kernels. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,Ozone",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ozone,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_O3_PR,"Retrieved ozone profiles are used to monitor the evolution of stratospheric and tropospheric ozone. Such monitoring is important as the ozone layer protects life on Earth against harmful UV radiation. The ozone layer is recovering from depletion due to manmade Chlorofluorocarbons (CFCs). Tropospheric ozone is toxic and it plays an important role in tropospheric chemistry. Also, ozone is a greenhouse gas and is therefore also relevant for climate change. The main parameters in the file are the retrieved ozone profile at 33 levels and the retrieved sub-columns of ozone in 6 layers. In addition, the total ozone column and tropospheric ozone columns are provided. For the ozone profile, the precision and smoothing errors, the a-priori profile and the averaging kernel are also provided. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,PR,Ozone,Profile",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Ozone Profile,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +S5P_L2_O3_TCL,"Ozone in the tropical troposphere plays various important roles. The intense UV radiation and high humidity in the tropics stimulate the formation of the hydroxyl radical (OH) by the photolysis of ozone. OH is the most important oxidant in the troposphere because it reacts with virtually all trace gases, such as CO, CH4 and other hydrocarbons. The tropics are also characterized by large emissions of nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons, both from natural and anthropogenic sources. Ozone that is formed over regions where large amounts of these ozone precursors are emitted, can be transported over great distances and affects areas far from the source. The TROPOMI tropospheric ozone product is a level-2c product that represents three day averaged tropospheric ozone columns on a 0.5Ā° by 1Ā° latitude-longitude grid for the tropical region between 20Ā°N and 20Ā°S. The TROPOMI tropospheric ozone column product uses the TROPOMI Level-2 total OZONE and CLOUD products as input. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,O3,TCL,Tropospheric,Ozone",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Tropospheric Ozone,2017-10-13T00:00:00Z,,,,,,available,,,,,,,available,,,,,,, +S5P_L2_SO2,"Sulphur dioxide (SO2) enters the Earth's atmosphere through both natural (~30%) and anthropogenic processes (~70%). It plays a role in chemistry on a local and global scale and its impact ranges from short term pollution to effects on climate. Beside the total column of SO2, enhanced levels of SO2 are flagged within the products. The recognition of enhanced SO2 values is essential in order to detect and monitor volcanic eruptions and anthropogenic pollution sources. Volcanic SO2 emissions may also pose a threat to aviation, along with volcanic ash. ",TROPOMI,SENTINEL5P,S5P,L2,"SENTINEL,SENTINEL5P,S5P,L2,TROPOMI,SO2,Sulphur,Dioxide",ATMOSPHERIC,proprietary,Sentinel-5 Precursor Level 2 Sulphur Dioxide,2017-10-13T00:00:00Z,,,,,available,available,,,,,,,available,available,,,,,, +SPOT5_SPIRIT,SPOT 5 stereoscopic survey of Polar Ice. ,,SPOT5,SPOT5,L1A,"SPOT,SPOT5,L1A",OPTICAL,proprietary,Spot 5 SPIRIT,2002-05-04T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +SPOT_SWH,The Spot World Heritage (SWH) programme objective is the free availability for non-commercial use of orthorectified products derived from multispectral images of more than 5 years old from the Spot 1-5 satellites family. More informations on https://www.theia-land.fr/en/product/spot-world-heritage/ ,,SPOT1-5,SPOT1-5,L1C,"SPOT,SPOT1,SPOT2,SPOT3,SPOT4,SPOT5,L1C",OPTICAL,proprietary,Spot World Heritage,1986-02-22T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +SPOT_SWH_OLD,Spot world heritage Old format. ,,SPOT1-5,SPOT1-5,L1C,"SPOT,SPOT1,SPOT2,SPOT3,SPOT4,SPOT5,L1C",OPTICAL,proprietary,Spot World Heritage,1986-02-22T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +TIGGE_CF_SFC,TIGGE (THORPEX Interactive Grand Global Ensemble) Surface Control forecast from ECMWF ,,TIGGE,TIGGE,,"THORPEX,TIGGE,CF,SFC,ECMWF",ATMOSPHERIC,proprietary,TIGGE ECMWF Surface Control forecast,2003-01-01T00:00:00Z,,,,,,,,,,available,,,,,,,,,, +VENUS_L1C,A light description of Venus L1 data is available at http://www.cesbio.ups-tlse.fr/multitemp/?page_id=12984 ,,VENUS,VENUS,L1C,"VENUS,L1,L1C",OPTICAL,proprietary,Venus Level1-C,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +VENUS_L2A_MAJA,"Level2 products provide surface reflectances after atmospheric correction, along with masks of clouds and their shadows. Data is processed by MAJA (before called MACCS) for THEIA land data center. ",,VENUS,VENUS,L2A,"VENUS,L2,L2A",OPTICAL,proprietary,Venus Level2-A,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,,available,, +VENUS_L3A_MAJA,,,VENUS,VENUS,L3A,"VENUS,L3,L3A",OPTICAL,proprietary,Venus Level3-A,2017-08-02T00:00:00Z,,,,,,,,,,,,,,,,,,available,, diff --git a/docs/_static/stac_browser_example.png b/docs/_static/stac_browser_example.png index c3fc84e8e..7cbfa1953 100644 Binary files a/docs/_static/stac_browser_example.png and b/docs/_static/stac_browser_example.png differ diff --git a/docs/_static/stac_browser_example_600.png b/docs/_static/stac_browser_example_600.png index f5462e0cf..de571ba5e 100644 Binary files a/docs/_static/stac_browser_example_600.png and b/docs/_static/stac_browser_example_600.png differ diff --git a/docs/getting_started_guide/providers.rst b/docs/getting_started_guide/providers.rst index 171b97c5d..9270502a6 100644 --- a/docs/getting_started_guide/providers.rst +++ b/docs/getting_started_guide/providers.rst @@ -9,8 +9,8 @@ Description Products from the following providers are made avaiable through ``eodag``: * `usgs `_: U.S geological survey catalog for Landsat products -* `theia `_: French National Space Agency (CNES) catalog for Sentinel 2 products, Pleiades and Landsat products -* `peps `_: French National Space Agency (CNES) catalog for Copernicus (Sentinel 1, 2, 3) products +* `theia `_: French National Space Agency (CNES) value-adding products for Land surfaces +* `peps `_: French National Space Agency (CNES) catalog for Sentinel products * `aws_eos `_: EOS search for Amazon public datasets * `creodias `_: CloudFerro DIAS * `mundi `_: Atos DIAS @@ -22,10 +22,11 @@ Products from the following providers are made avaiable through ``eodag``: * `ecmwf `_: European Centre for Medium-Range Weather Forecasts * `cop_ads `_: Copernicus Atmosphere Data Store * `cop_cds `_: Copernicus Climate Data Store -* `sara `_: Sentinel Australasia Regional Acces +* `sara `_: Sentinel Australasia Regional Access * `meteoblue `_: Meteoblue forecast * `cop_dataspace `_: Copernicus Data Space * `planetary_computer `_: Microsoft Planetary Computer +* `hydroweb_next `_: hydroweb.next thematic hub for hydrology data access Providers available through an external plugin: diff --git a/docs/getting_started_guide/register.rst b/docs/getting_started_guide/register.rst index 33e29d8c9..bea5eecd0 100644 --- a/docs/getting_started_guide/register.rst +++ b/docs/getting_started_guide/register.rst @@ -8,45 +8,49 @@ the users obtain a set of credentials (e.g. login/password, API key, etc.). Thes need to be provided to ``eodag`` (see :ref:`configure`). The list below explains how to register to each provider supported by ``eodag``: -* `usgs`: create an account `here `__ and then `request an access `_ to the `Machine-to-Machine (M2M) API `_. +* ``usgs``: create an account `here `__ and then `request an access `_ to the `Machine-to-Machine (M2M) API `_. Product requests can be performed once access to the M2M API has been granted to you. -* `theia`: create an account `here `__ +* ``theia``: create an account `here `__ -* `peps`: create an account `here `__, then use your email as `username` in eodag credentials. +* ``peps``: create an account `here `__, then use your email as `username` in eodag credentials. -* `creodias`: create an account `here `__ +* ``creodias``: create an account `here `__ -* `onda`: create an account `here: `__ +* ``onda``: create an account `here: `__ -* `mundi`: create an account `here `__ (click on "login" and then go in the "register" tab). +* ``mundi``: create an account `here `__ (click on "login" and then go in the "register" tab). Then use as *apikey* the Web Token provided `here `__ -* `ecmwf`: create an account `here `__. +* ``ecmwf``: create an account `here `__. Then use *email* as *username* and *key* as *password* from `here `__ in eodag credentials. EODAG can be used to request for public datasets as for operational archive. Please note that for public datasets you might need to accept a license (e.g. for `TIGGE `__) -* `cop_ads`: create an account `here `__. +* ``cop_ads``: create an account `here `__. Then go to your profile and use from the section named "API key" the *UID* as *username* and *API Key* as *password* in eodag credentials. EODAG can be used to request for public datasets, you can browse them `here `__. -* `cop_cds`: create an account `here `__. +* ``cop_cds``: create an account `here `__. Then go to your profile and use from the section named "API key" use *UID* as *username* and *API Key* as *password* in eodag credentials. EODAG can be used to request for public datasets, you can browse them `here `__. -* `sara`: create an account `here `__, then use your email as `username` in eodag credentials. +* ``sara``: create an account `here `__, then use your email as `username` in eodag credentials. -* `meteoblue`: eodag uses `dataset API `_ +* ``meteoblue``: eodag uses `dataset API `_ which requires the access level `Access Gold `_. Contact `support@meteoblue.com `_ to apply for a free API key trial. -* `cop_dataspace`: create an account `here `__ +* ``cop_dataspace``: create an account `here `__ -* `planetary_computer`: most datasets are anonymously accessible, but a subscription key may be needed to increase `rate limits and access private datasets `_. +* ``planetary_computer``: most datasets are anonymously accessible, but a subscription key may be needed to increase `rate limits and access private datasets `_. Create an account `here `__, then view your keys by signing in with your Microsoft account `here `__. -* `aws_eos`: you need credentials for both EOS (search) and AWS (download): +* ``hydroweb_next``: Go to `https://hydroweb.next.theia-land.fr `_, then login or + create an account by clicking on ``Log in`` in the top-right corner. Once logged-in, create an API key in the user + settings page, and used it as *apikey* in EODAG provider auth credentials. + +* ``aws_eos``: you need credentials for both EOS (search) and AWS (download): * Create an account on `EOS `__ @@ -66,7 +70,7 @@ to each provider supported by ``eodag``: EOS free account is limited to 100 requests. -* `astraea_eod, earth_search, usgs_satapi_aws`: you need AWS credentials for download: +* ``astraea_eod``, ``earth_search``, ``usgs_satapi_aws``: you need AWS credentials for download: * Create an account on `AWS `__ @@ -83,7 +87,7 @@ to each provider supported by ``eodag``: A credit card number must be provided when creating an AWS account because fees apply after a given amount of downloaded data. -* `earth_search_gcs`: you need HMAC keys for Google Cloud Storage: +* ``earth_search_gcs``: you need HMAC keys for Google Cloud Storage: * Sign in using a `google account `__. diff --git a/docs/index.rst b/docs/index.rst index 89bc0f019..95bab26c4 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -36,7 +36,8 @@ types (Sentinel 1, Sentinel 2, Sentinel 3, Landsat, etc.) that can be searched a `sara `_, `meteoblue `_, `cop_dataspace `_, - `planetary_computer `_ + `planetary_computer `_, + `hydroweb_next `_ EODAG has the following primary features: diff --git a/docs/notebooks/api_user_guide/2_providers_products_available.ipynb b/docs/notebooks/api_user_guide/2_providers_products_available.ipynb index 91e1c35b8..1d80a6db5 100644 --- a/docs/notebooks/api_user_guide/2_providers_products_available.ipynb +++ b/docs/notebooks/api_user_guide/2_providers_products_available.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -49,6 +49,7 @@ " 'earth_search_cog',\n", " 'earth_search_gcs',\n", " 'ecmwf',\n", + " 'hydroweb_next',\n", " 'meteoblue',\n", " 'mundi',\n", " 'onda',\n", @@ -60,7 +61,7 @@ " 'usgs_satapi_aws']" ] }, - "execution_count": 24, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -72,14 +73,14 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "eodag has 19 providers already configured.\n" + "eodag has 20 providers already configured.\n" ] } ], @@ -96,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -153,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -171,14 +172,14 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "EODAG has 126 product types stored in its extended catalog, after having fetched providers.\n" + "EODAG has 231 product types stored in its extended catalog, after having fetched providers.\n" ] } ], @@ -196,14 +197,14 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "list_product_types() keeps returning 126 product types.\n" + "list_product_types() keeps returning 231 product types.\n" ] } ], @@ -214,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -244,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -374,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -409,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -439,14 +440,14 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The provider with the largest number of product types is 'creodias' with 61.\n" + "The provider with the largest number of product types is 'planetary_computer' with 105.\n" ] } ], diff --git a/docs/notebooks/api_user_guide/3_configuration.ipynb b/docs/notebooks/api_user_guide/3_configuration.ipynb index 9820ec7e3..b5297a883 100644 --- a/docs/notebooks/api_user_guide/3_configuration.ipynb +++ b/docs/notebooks/api_user_guide/3_configuration.ipynb @@ -48,6 +48,7 @@ " 'earth_search_cog',\n", " 'earth_search_gcs',\n", " 'ecmwf',\n", + " 'hydroweb_next',\n", " 'meteoblue',\n", " 'mundi',\n", " 'onda',\n", @@ -139,7 +140,7 @@ { "data": { "text/plain": [ - "('tamn', 6)" + "('tamn', 2)" ] }, "execution_count": 5, @@ -197,15 +198,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-02-23 15:55:07,900 eodag.config [INFO ] (config ) Loading user configuration from: /home/sylvain/.config/eodag/eodag.yml\n", - "2023-02-23 15:55:08,006 eodag.core [DEBUG ] (core ) Opening product types index in /home/sylvain/.config/eodag/.index\n", - "2023-02-23 15:55:08,010 eodag.core [INFO ] (core ) Locations configuration loaded from /home/sylvain/.config/eodag/locations.yml\n" + "2023-04-14 14:49:24,033 eodag.config [INFO ] (config ) Loading user configuration from: /home/sylvain/.config/eodag/eodag.yml\n", + "2023-04-14 14:49:24,237 eodag.core [DEBUG ] (core ) Opening product types index in /home/sylvain/.config/eodag/.index\n", + "2023-04-14 14:49:24,245 eodag.core [INFO ] (core ) Locations configuration loaded from /home/sylvain/.config/eodag/locations.yml\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -216,13 +217,6 @@ "source": [ "EODataAccessGateway()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/docs/notebooks/tutos/tuto_search_location_tile.ipynb b/docs/notebooks/tutos/tuto_search_location_tile.ipynb index 0547ede5d..3e7992d47 100644 --- a/docs/notebooks/tutos/tuto_search_location_tile.ipynb +++ b/docs/notebooks/tutos/tuto_search_location_tile.ipynb @@ -1,50 +1,76 @@ { - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.6" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python3", - "display_name": "Python 3.8.6 64-bit", - "metadata": { - "interpreter": { - "hash": "0cf725079c7d16f2cba0a185a776402bb287255802a557bed9d05e4eed5bfa43" - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 2, "cells": [ { + "cell_type": "markdown", + "metadata": {}, "source": [ "# Search for products by tile" - ], + ] + }, + { "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "## Built-in search by tile\n", + "\n", + "Many providers already support search by tile (*Sentinel 2 MGRS tiling grid*):\n", + "`peps`, `theia`, `mundi`, `onda`, `creodias`, `cop_dataspace`, `planetary_computer`, `earth_search`.\n", + "\n", + "For these providers, you can use `tileIdentifier` as search parameter using EODAG:" + ] }, { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(EOProduct(id=S2A_MSIL1C_20180614T103021_N0206_R108_T31TFK_20180614T124154, provider=peps),\n", + " '31TFK'),\n", + " (EOProduct(id=S2B_MSIL1C_20180612T104019_N0206_R008_T31TFK_20180612T124717, provider=peps),\n", + " '31TFK'),\n", + " (EOProduct(id=S2B_MSIL1C_20180609T103019_N0206_R108_T31TFK_20180609T131037, provider=peps),\n", + " '31TFK'),\n", + " (EOProduct(id=S2A_MSIL1C_20180607T104021_N0206_R008_T31TFK_20180607T124742, provider=peps),\n", + " '31TFK'),\n", + " (EOProduct(id=S2A_MSIL1C_20180604T103021_N0206_R108_T31TFK_20180604T141551, provider=peps),\n", + " '31TFK'),\n", + " (EOProduct(id=S2B_MSIL1C_20180602T104019_N0206_R008_T31TFK_20180602T132118, provider=peps),\n", + " '31TFK')]\n" + ] + } + ], + "source": [ + "from pprint import pprint\n", + "from eodag import EODataAccessGateway, setup_logging\n", + "\n", + "dag = EODataAccessGateway()\n", + "dag.set_preferred_provider(\"peps\")\n", + "products, _ = dag.search(\n", + " productType=\"S2_MSI_L1C\", \n", + " start=\"2018-06-01\", \n", + " end=\"2018-06-15\", \n", + " tileIdentifier=\"31TFK\"\n", + ")\n", + "pprint([(product, product.properties[\"tileIdentifier\"]) for product in products])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ + "## Search by tile using custom locations\n", "`eodag` allows to search for products by geometric features that match a *location query*, see the [API user guide](../api_user_guide/4_search.ipynb#locations-search) for an introduction to this concept.\n", "\n", "In this tutorial we will use a shapefile that represents the Sentinel 2 tiling grid to search for *Sentinel 2 Level-1C* products with *PEPS* **at a specific tile**. In this shapefile each tile is defined by its centroid and a `tile_id` attribute (e.g. *29PMT*). This shapefile was created by downloading first the Sentinel 2 tiling grid (MGRS) provided [by ESA as a KML file](https://web.archive.org/web/20200907072744/https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products). It was then converted as a shapefile and processed to compute the centroids. We use the tile's centroid here as `eodag` returns products that intersects the user defined search area. Since tiles overlap with each other, using the polygons instead of the centroids would return more tiles than just the one we target. " - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -55,29 +81,26 @@ "import folium\n", "from folium.plugins import TimestampedGeoJson\n", "# pyshp: to read shapefiles\n", - "import shapefile\n", - "\n", - "from eodag import EODataAccessGateway\n", - "from eodag import setup_logging" + "import shapefile" ] }, { - "source": [ - "## Setup" - ], "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "### Setup" + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "A workspace directory is created to store the files that will be generated." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -87,15 +110,15 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "You should have an `auxdata` folder next to this tutorial's file. It contains a shapefile that is needed to run this tutorial correctly." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -116,32 +139,32 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "In this tutorial products will just be searched for, not downloaded. We don't need to set up PEPS credentials to search for products. If you wish to download them, you should set the credentials beforehand, using these two environment variables for instance." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], "source": [ "# os.environ[\"EODAG__PEPS__AUTH__CREDENTIALS__USERNAME\"] = \"PLEASE_CHANGE_ME\"\n", "# os.environ[\"EODAG__PEPS__AUTH__CREDENTIALS__PASSWORD\"] = \"PLEASE_CHANGE_ME\"" - ], - "cell_type": "code", - "metadata": {}, - "execution_count": 5, - "outputs": [] + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Logging is activated to better inspect what `eodag` does internally." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -149,15 +172,15 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The default search criteria consists of a time period in June 2018 and `eodag`'s product type identifier for *Sentinel 2 Level-1C* products." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -169,29 +192,33 @@ ] }, { - "source": [ - "## Add a locations configuration" - ], "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "### Add a locations configuration" + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We check and store the content of this shapefile." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "shapefile Reader\n 56686 shapes (type 'POINT')\n 56686 records (2 fields) \n\nfields: [('DeletionFlag', 'C', 1, 0), ['tile_id', 'C', 5, 0]]\n" + "shapefile Reader\n", + " 56686 shapes (type 'POINT')\n", + " 56686 records (2 fields) \n", + "\n", + "fields: [('DeletionFlag', 'C', 1, 0), ['tile_id', 'C', 5, 0]]\n" ] } ], @@ -204,17 +231,17 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "It has about 57 000 tiles/polygons and a field `tile_id`.\n", "\n", "We create a YAML file to configure this new location selector, we will refer to it with `s2_tile_centroid`." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -233,23 +260,23 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "An instance of an [EODataAccessGateway](../../api_reference/core.rst#eodag.api.core.EODataAccessGateway) class is created, it makes use of this location configuration file." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ - "2021-04-12 21:30:54,673-15s eodag.config [INFO ] Loading user configuration from: /home/maxime/.config/eodag/eodag.yml\n", - "2021-04-12 21:30:55,523-15s eodag.core [INFO ] Locations configuration loaded from /home/maxime/TRAVAIL/06_EODAG/01_eodag/eodag/docs/notebooks/tutos/eodag_workspace_locations_tiles/custom_locations.yml\n" + "2023-04-17 10:15:54,835 eodag.config [INFO ] Loading user configuration from: /home/sylvain/.config/eodag/eodag.yml\n", + "2023-04-17 10:15:55,054 eodag.core [INFO ] Locations configuration loaded from /home/sylvain/workspace/eodag/docs/notebooks/tutos/eodag_workspace_locations_tiles/custom_locations.yml\n" ] } ], @@ -258,26 +285,26 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We want to look for *Sentinel 2 Level-1C* products. We can check whether this product type is offered by *PEPS* (as configured in `eodag`). If so, *PEPS* is set as the provider used to search for products." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, + "execution_count": 12, "metadata": {}, - "execution_count": 11 + "output_type": "execute_result" } ], "source": [ @@ -286,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -294,29 +321,29 @@ ] }, { - "source": [ - "## Search" - ], "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "### Search" + ] }, { - "source": [ - "### A single tile" - ], "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "#### A single tile" + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Our target tile is `31TFK` and is located in the South-East of France. Its feature is retrieved from the shapefil to be displayed later on an interactive map." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -331,59 +358,221 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We search for all the products that intersect with the centroid of this tile." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { - "source": [ - "products = dag.search_all(\n", - " locations=dict(s2_tile_centroid=\"31TFK\"),\n", - " **default_search_criteria\n", - ")\n", - "print(f\"{len(products)} were found given the above search criteria\")" - ], "cell_type": "code", + "execution_count": 15, "metadata": {}, - "execution_count": 14, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", + "text": [ + "2023-04-17 10:16:38,765 eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", + "2023-04-17 10:16:38,766 eodag.core [INFO ] Iterate search over multiple pages: page #1\n", + "2023-04-17 10:16:38,778 eodag.plugins.search.qssearch [INFO ] Sending search request: https://peps.cnes.fr/resto/api/collections/S2ST/search.json?startDate=2018-06-01&completionDate=2018-06-15&geometry=POINT (4.9533 44.6422)&productType=S2MSI1C&maxRecords=500&page=1\n", + "2023-04-17 10:16:40,033 eodag.core [INFO ] Found 6 result(s) on provider 'peps'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", "text": [ - "2021-04-12 21:30:59,211-15s eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", - "2021-04-12 21:31:01,183-15s eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", - "2021-04-12 21:31:01,186-15s eodag.plugins.search.qssearch [INFO ] Sending search request: https://peps.cnes.fr/resto/api/collections/S2ST/search.json?startDate=2018-06-01&completionDate=2018-06-15&geometry=POINT (4.9533 44.6422)&productType=S2MSI1C&maxRecords=500&page=1\n", - "2021-04-12 21:31:09,116-15s eodag.core [INFO ] Found 6 result(s) on provider 'peps'\n", "6 were found given the above search criteria\n" ] } + ], + "source": [ + "products = dag.search_all(\n", + " locations=dict(s2_tile_centroid=\"31TFK\"),\n", + " **default_search_criteria\n", + ")\n", + "print(f\"{len(products)} were found given the above search criteria\")" ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The products found are displayed on an interactive map along with the centroid of the targeted tile. A time player allows to see when the products were sensed." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "" + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], - "text/html": "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + "text/plain": [ + "" + ] }, + "execution_count": 16, "metadata": {}, - "execution_count": 15 + "output_type": "execute_result" } ], "source": [ @@ -412,6 +601,8 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "
\n", "\n", @@ -422,37 +613,35 @@ "
\n", "\n", " " - ], - "cell_type": "markdown", - "metadata": {} + ] }, { - "source": [ - "### Multiple tiles" - ], "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "#### Multiple tiles" + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "We can search for products that overlap with several tiles using a **regular expression**. We use the expression `\"31T[CDE][MLK]\"` to look for products over 9 different tiles (*31TCM*, *31TCL*, *31TCK*, *31TDM*, etc.) over France." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ - "2021-04-12 21:31:11,855-15s eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", - "2021-04-12 21:31:13,863-15s eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", - "2021-04-12 21:31:13,866-15s eodag.plugins.search.qssearch [INFO ] Sending search request: https://peps.cnes.fr/resto/api/collections/S2ST/search.json?startDate=2018-06-01&completionDate=2018-06-15&geometry=MULTIPOINT (3.7147 46.4567, 3.7032 45.5565, 3.6922 44.6568, 2.4122 46.4574, 1.1109 46.4433, 1.1413 45.5436, 1.1703 44.6442, 2.4216 45.5572, 2.4306 44.6575)&productType=S2MSI1C&maxRecords=500&page=1\n", - "2021-04-12 21:31:17,241-15s eodag.core [INFO ] Found 32 result(s) on provider 'peps'\n" + "2023-04-17 10:17:26,059 eodag.core [INFO ] Searching product type 'S2_MSI_L1C' on provider: peps\n", + "2023-04-17 10:17:26,060 eodag.core [INFO ] Iterate search over multiple pages: page #1\n", + "2023-04-17 10:17:26,061 eodag.plugins.search.qssearch [INFO ] Sending search request: https://peps.cnes.fr/resto/api/collections/S2ST/search.json?startDate=2018-06-01&completionDate=2018-06-15&geometry=MULTIPOINT (3.7147 46.4567, 3.7032 45.5565, 3.6922 44.6568, 2.4122 46.4574, 2.4216 45.5572, 1.1109 46.4433, 1.1413 45.5436, 1.1703 44.6442, 2.4306 44.6575)&productType=S2MSI1C&maxRecords=500&page=1\n", + "2023-04-17 10:17:26,745 eodag.core [INFO ] Found 32 result(s) on provider 'peps'\n" ] } ], @@ -465,12 +654,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "32 were found given the above search criteria\n" ] @@ -481,27 +670,150 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "The products are displayed on an interactive map. By hovering over them you can observe that the MGRS number of the tiles match with the regular expressions we used." - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "" + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], - "text/html": "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + "text/plain": [ + "" + ] }, + "execution_count": 20, "metadata": {}, - "execution_count": 18 + "output_type": "execute_result" } ], "source": [ @@ -513,7 +825,7 @@ " tooltip=folium.GeoJsonTooltip(\n", " fields=[\n", " \"title\", # The product's title\n", - " \"mgrs\", #Ā The tile number on the MGRS grid\n", + " \"tileIdentifier\", #Ā The tile number on the MGRS grid\n", " ]\n", " ),\n", ").add_to(fmap)\n", @@ -521,11 +833,39 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "This example has demonstrated the possibilities offered by `eodag` to easily select products from a tile grid by using regular expressions over their identifier." - ], - "cell_type": "markdown", - "metadata": {} + ] } - ] + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/plugins.rst b/docs/plugins.rst index 6d2d196c3..96c5f4815 100644 --- a/docs/plugins.rst +++ b/docs/plugins.rst @@ -68,6 +68,8 @@ The providers are implemented with a triplet of *Search/Authentication/Download* +--------------------+-----------------------+--------------------------+----------------+ | planetary_computer | StacSearch | SASAuth | HTTPDownload | +--------------------+-----------------------+--------------------------+----------------+ +| hydroweb_next | StacSearch | HTTPHeaderAuth | HTTPDownload | ++--------------------+-----------------------+--------------------------+----------------+ .. _creating_plugins: diff --git a/docs/stac_rest.rst b/docs/stac_rest.rst index f8b69fce7..8431c121e 100644 --- a/docs/stac_rest.rst +++ b/docs/stac_rest.rst @@ -74,7 +74,7 @@ Example URL: * http://127.0.0.1:5000/search?collections=S2_MSI_L1C&bbox=0,43,1,44&datetime=2018-01-20/2018-01-25&cloudCover=20 Browsing ---------- +-------- EODAG provides additional catalogs that extend browsing/filtering capabilities: @@ -110,6 +110,16 @@ And browse http://127.0.0.1:5001: :width: 800 :alt: STAC browser example +docker +------ + +In addition of the *docker-compose* configuration included in sources and described just above, ``eodag-server`` is +available on `https://hub.docker.com/r/csspace/eodag-server `_: + +.. code-block:: bash + + $ docker run -p 5000:5000 --rm csspace/eodag-server:2.10.0 + Example ------- diff --git a/eodag/api/core.py b/eodag/api/core.py index 0af679b63..4acd236f2 100644 --- a/eodag/api/core.py +++ b/eodag/api/core.py @@ -787,6 +787,8 @@ def guess_product_type(self, **kwargs): :rtype: list[str] :raises: :class:`~eodag.utils.exceptions.NoMatchingProductType` """ + if kwargs.get("productType", None): + return [kwargs["productType"]] supported_params = { param for param in ( @@ -887,6 +889,11 @@ def search( ) search_plugin = search_kwargs.pop("search_plugin", None) if search_kwargs.get("id"): + # adds minimal pagination to be able to check only 1 product is returned + search_kwargs.update( + page=1, + items_per_page=2, + ) # remove auth from search_kwargs as a loop over providers will be performed search_kwargs.pop("auth", None) return self._search_by_id(search_kwargs.pop("id"), **search_kwargs) @@ -1180,6 +1187,7 @@ def _search_by_id(self, uid, provider=None, **kwargs): ) logger.debug("Using plugin class for search: %s", plugin.__class__.__name__) auth = self._plugins_manager.get_auth_plugin(plugin.provider) + plugin.clear() results, _ = self._do_search(plugin, auth=auth, id=uid, **kwargs) if len(results) == 1: if not results[0].product_type: diff --git a/eodag/api/product/_product.py b/eodag/api/product/_product.py index b4cef4c9b..37f03d650 100644 --- a/eodag/api/product/_product.py +++ b/eodag/api/product/_product.py @@ -90,7 +90,9 @@ def __init__(self, provider, properties, **kwargs): self.properties = { key: value for key, value in properties.items() - if key != "geometry" and value not in [NOT_MAPPED, NOT_AVAILABLE] + if key != "geometry" + and value != NOT_MAPPED + and NOT_AVAILABLE not in str(value) } if "geometry" not in properties or ( properties["geometry"] == NOT_AVAILABLE diff --git a/eodag/plugins/crunch/filter_latest_intersect.py b/eodag/plugins/crunch/filter_latest_intersect.py index 304be5c9f..6ea37c494 100644 --- a/eodag/plugins/crunch/filter_latest_intersect.py +++ b/eodag/plugins/crunch/filter_latest_intersect.py @@ -51,6 +51,7 @@ def proceed(self, products, **search_params): :param products: A list of products resulting from a search :type products: list(:class:`~eodag.api.product._product.EOProduct`) :param search_params: Search criteria that must contain `geometry` (dict) + or search `geom` (:class:`shapely.geometry.base.BaseGeometry`) argument will be used :type search_params: dict :returns: The filtered products :rtype: list(:class:`~eodag.api.product._product.EOProduct`) @@ -62,18 +63,26 @@ def proceed(self, products, **search_params): products.sort(key=self.sort_product_by_start_date, reverse=True) filtered = [] add_to_filtered = filtered.append - footprint = search_params.get("geometry") + footprint = search_params.get("geometry") or search_params.get("geom") if not footprint: logger.warning( "geometry not found in cruncher arguments, filtering disabled." ) return products - search_extent = geometry.box( - footprint["lonmin"], - footprint["latmin"], - footprint["lonmax"], - footprint["latmax"], - ) + elif isinstance(footprint, dict): + search_extent = geometry.box( + footprint["lonmin"], + footprint["latmin"], + footprint["lonmax"], + footprint["latmax"], + ) + elif not isinstance(footprint, geometry.base.BaseGeometry): + logger.warning( + "geometry found in cruncher arguments did not match the expected format." + ) + return products + else: + search_extent = footprint logger.debug("Initial requested extent area: %s", search_extent.area) for product in products: logger.debug("Uncovered extent area: %s", search_extent.area) diff --git a/eodag/resources/ext_product_types.json b/eodag/resources/ext_product_types.json index 07db56f9f..95797f952 100644 --- a/eodag/resources/ext_product_types.json +++ b/eodag/resources/ext_product_types.json @@ -1 +1 @@ -{"astraea_eod": {"providers_config": {"landsat8_c2l1t1": {"productType": "landsat8_c2l1t1"}, "mcd43a4": {"productType": "mcd43a4"}, "mod11a1": {"productType": "mod11a1"}, "mod13a1": {"productType": "mod13a1"}, "myd11a1": {"productType": "myd11a1"}, "myd13a1": {"productType": "myd13a1"}, "maxar_open_data": {"productType": "maxar_open_data"}, "naip": {"productType": "naip"}, "sentinel1_l1c_grd": {"productType": "sentinel1_l1c_grd"}, "sentinel2_l1c": {"productType": "sentinel2_l1c"}, "sentinel2_l2a": {"productType": "sentinel2_l2a"}, "spacenet7": {"productType": "spacenet7"}, "umbra_open_data": {"productType": "umbra_open_data"}}, "product_types_config": {"landsat8_c2l1t1": {"abstract": "Landsat 8 Collection 2 Tier 1 Precision Terrain from Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat8-c2l1t1", "license": "PDDL-1.0", "title": "Landsat 8 - Level 1", "missionStartDate": "2013-03-18T15:59:02.333Z"}, "mcd43a4": {"abstract": "MCD43A4: MODIS/Terra and Aqua Nadir BRDF-Adjusted Reflectance Daily L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mcd43a4", "license": "CC-PDDC", "title": "MCD43A4 NBAR", "missionStartDate": "2000-02-16T00:00:00.000Z"}, "mod11a1": {"abstract": "MOD11A1: MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mod11a1", "license": "CC-PDDC", "title": "MOD11A1 LST", "missionStartDate": "2000-02-24T00:00:00.000Z"}, "mod13a1": {"abstract": "MOD13A1: MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mod13a1", "license": "CC-PDDC", "title": "MOD13A1 VI", "missionStartDate": "2000-02-18T00:00:00.000Z"}, "myd11a1": {"abstract": "MYD11A1: MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "myd11a1", "license": "CC-PDDC", "title": "MYD11A1 LST", "missionStartDate": "2002-07-04T00:00:00.000Z"}, "myd13a1": {"abstract": "MYD13A1: MODIS/Aqua Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "myd13a1", "license": "CC-PDDC", "title": "MYD13A1 VI", "missionStartDate": "2002-07-04T00:00:00.000Z"}, "maxar_open_data": {"abstract": "Maxar Open Data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "maxar-open-data", "license": "CC-BY-NC-4.0", "title": "Maxar Open Data", "missionStartDate": "2008-01-15T00:00:00.000Z"}, "naip": {"abstract": "National Agriculture Imagery Program aerial imagery", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "naip", "license": "CC-PDDC", "title": "NAIP", "missionStartDate": "2012-04-23T12:00:00.000Z"}, "sentinel1_l1c_grd": {"abstract": "Sentinel-1 Level-1 Ground Range Detected data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel1-l1c-grd", "license": "CC-BY-SA-3.0", "title": "Sentinel-1 L1C GRD", "missionStartDate": "2017-09-27T14:19:16.000"}, "sentinel2_l1c": {"abstract": "Sentinel-2 Level-1C top of atmosphere", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel2-l1c", "license": "CC-BY-SA-3.0", "title": "Sentinel-2 L1C", "missionStartDate": "2015-06-27T10:25:31.456Z"}, "sentinel2_l2a": {"abstract": "Sentinel-2 Level-2A atmospherically corrected data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel2-l2a", "license": "CC-BY-SA-3.0", "title": "Sentinel-2 L2A", "missionStartDate": "2018-04-01T07:02:22.463Z"}, "spacenet7": {"abstract": "SpaceNet 7 Imagery and Labels", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "spacenet7", "license": "CC-BY-SA-4.0", "title": "SpaceNet 7", "missionStartDate": "2018-01-01T00:00:00.000Z"}, "umbra_open_data": {"abstract": "Umbra Open Data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "umbra-open-data", "license": "proprietary", "title": "Umbra Open Data", "missionStartDate": null}}}, "creodias": {"providers_config": {"LANDSAT-5": {"collection": "LANDSAT-5"}, "SENTINEL-1": {"collection": "SENTINEL-1"}, "SENTINEL-2": {"collection": "SENTINEL-2"}, "ENVISAT": {"collection": "ENVISAT"}, "COP-DEM": {"collection": "COP-DEM"}, "SENTINEL-1-RTC": {"collection": "SENTINEL-1-RTC"}, "SENTINEL-5P": {"collection": "SENTINEL-5P"}, "SMOS": {"collection": "SMOS"}, "LANDSAT-8": {"collection": "LANDSAT-8"}, "S2GLC": {"collection": "S2GLC"}, "TERRAAQUA": {"collection": "TERRAAQUA"}, "SENTINEL-3": {"collection": "SENTINEL-3"}, "LANDSAT-7": {"collection": "LANDSAT-7"}, "SENTINEL-6": {"collection": "SENTINEL-6"}}, "product_types_config": {"LANDSAT-5": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-5", "license": null, "title": "LANDSAT-5", "missionStartDate": null}, "SENTINEL-1": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-1", "license": null, "title": "SENTINEL-1", "missionStartDate": null}, "SENTINEL-2": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-2", "license": null, "title": "SENTINEL-2", "missionStartDate": null}, "ENVISAT": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "envisat", "license": null, "title": "ENVISAT", "missionStartDate": null}, "COP-DEM": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cop-dem", "license": null, "title": "COP-DEM", "missionStartDate": null}, "SENTINEL-1-RTC": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-1-rtc", "license": null, "title": "SENTINEL-1-RTC", "missionStartDate": null}, "SENTINEL-5P": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-5p", "license": null, "title": "SENTINEL-5P", "missionStartDate": null}, "SMOS": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "smos", "license": null, "title": "SMOS", "missionStartDate": null}, "LANDSAT-8": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-8", "license": null, "title": "LANDSAT-8", "missionStartDate": null}, "S2GLC": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "s2glc", "license": null, "title": "S2GLC", "missionStartDate": null}, "TERRAAQUA": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "terraaqua", "license": null, "title": "TERRAAQUA", "missionStartDate": null}, "SENTINEL-3": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-3", "license": null, "title": "SENTINEL-3", "missionStartDate": null}, "LANDSAT-7": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-7", "license": null, "title": "LANDSAT-7", "missionStartDate": null}, "SENTINEL-6": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-6", "license": null, "title": "SENTINEL-6", "missionStartDate": null}}}, "earth_search": {"providers_config": {"sentinel-s2-l2a": {"productType": "sentinel-s2-l2a"}, "sentinel-s2-l1c": {"productType": "sentinel-s2-l1c"}, "landsat-8-l1-c1": {"productType": "landsat-8-l1-c1"}}, "product_types_config": {"sentinel-s2-l2a": {"abstract": "Sentinel-2a and Sentinel-2b imagery, processed to Level 2A (Surface Reflectance)", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "earth-observation,esa,msi,sentinel,sentinel-2,sentinel-2a,sentinel-2b,sentinel-s2-l2a", "license": "proprietary", "title": "Sentinel 2 L2A", "missionStartDate": "2015-06-27T10:25:31.456000Z"}, "sentinel-s2-l1c": {"abstract": "Sentinel-2a and Sentinel-2b imagery, processed to Level 1C (Top-Of-Atmosphere Geometrically Corrected)", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "earth-observation,esa,msi,sentinel,sentinel-2,sentinel-2a,sentinel-2b,sentinel-s2-l1c", "license": "proprietary", "title": "Sentinel 2 L1C", "missionStartDate": "2015-06-27T10:25:31.456000Z"}, "landsat-8-l1-c1": {"abstract": "Landat-8 L1 Collection-1 imagery radiometrically calibrated and orthorectified using gound points and Digital Elevation Model (DEM) data to correct relief displacement.", "instrument": "oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-8", "processingLevel": null, "keywords": "earth-observation,landsat,landsat-8,landsat-8-l1-c1,oli,tirs,usgs", "license": "PDDL-1.0", "title": "Landsat-8 L1 Collection-1", "missionStartDate": "2013-06-01T00:00:00Z"}}}, "earth_search_cog": null, "earth_search_gcs": null, "planetary_computer": {"providers_config": {"daymet-annual-pr": {"productType": "daymet-annual-pr"}, "daymet-daily-hi": {"productType": "daymet-daily-hi"}, "3dep-seamless": {"productType": "3dep-seamless"}, "3dep-lidar-dsm": {"productType": "3dep-lidar-dsm"}, "fia": {"productType": "fia"}, "esa-worldcover": {"productType": "esa-worldcover"}, "sentinel-1-rtc": {"productType": "sentinel-1-rtc"}, "gridmet": {"productType": "gridmet"}, "daymet-annual-na": {"productType": "daymet-annual-na"}, "daymet-monthly-na": {"productType": "daymet-monthly-na"}, "daymet-annual-hi": {"productType": "daymet-annual-hi"}, "daymet-monthly-hi": {"productType": "daymet-monthly-hi"}, "daymet-monthly-pr": {"productType": "daymet-monthly-pr"}, "gnatsgo-tables": {"productType": "gnatsgo-tables"}, "hgb": {"productType": "hgb"}, "cop-dem-glo-30": {"productType": "cop-dem-glo-30"}, "cop-dem-glo-90": {"productType": "cop-dem-glo-90"}, "goes-cmi": {"productType": "goes-cmi"}, "terraclimate": {"productType": "terraclimate"}, "nasa-nex-gddp-cmip6": {"productType": "nasa-nex-gddp-cmip6"}, "gpm-imerg-hhr": {"productType": "gpm-imerg-hhr"}, "io-lulc-9-class": {"productType": "io-lulc-9-class"}, "gnatsgo-rasters": {"productType": "gnatsgo-rasters"}, "3dep-lidar-hag": {"productType": "3dep-lidar-hag"}, "3dep-lidar-intensity": {"productType": "3dep-lidar-intensity"}, "3dep-lidar-pointsourceid": {"productType": "3dep-lidar-pointsourceid"}, "mtbs": {"productType": "mtbs"}, "landsat-8-c2-l2": {"productType": "landsat-8-c2-l2"}, "noaa-c-cap": {"productType": "noaa-c-cap"}, "3dep-lidar-copc": {"productType": "3dep-lidar-copc"}, "modis-64A1-061": {"productType": "modis-64A1-061"}, "alos-fnf-mosaic": {"productType": "alos-fnf-mosaic"}, "3dep-lidar-returns": {"productType": "3dep-lidar-returns"}, "mobi": {"productType": "mobi"}, "landsat-c2-l2": {"productType": "landsat-c2-l2"}, "era5-pds": {"productType": "era5-pds"}, "naip": {"productType": "naip"}, "chloris-biomass": {"productType": "chloris-biomass"}, "kaza-hydroforecast": {"productType": "kaza-hydroforecast"}, "planet-nicfi-analytic": {"productType": "planet-nicfi-analytic"}, "modis-17A2H-061": {"productType": "modis-17A2H-061"}, "modis-11A2-061": {"productType": "modis-11A2-061"}, "daymet-daily-pr": {"productType": "daymet-daily-pr"}, "3dep-lidar-dtm-native": {"productType": "3dep-lidar-dtm-native"}, "3dep-lidar-classification": {"productType": "3dep-lidar-classification"}, "3dep-lidar-dtm": {"productType": "3dep-lidar-dtm"}, "gap": {"productType": "gap"}, "modis-17A2HGF-061": {"productType": "modis-17A2HGF-061"}, "planet-nicfi-visual": {"productType": "planet-nicfi-visual"}, "gbif": {"productType": "gbif"}, "modis-17A3HGF-061": {"productType": "modis-17A3HGF-061"}, "modis-09A1-061": {"productType": "modis-09A1-061"}, "alos-dem": {"productType": "alos-dem"}, "alos-palsar-mosaic": {"productType": "alos-palsar-mosaic"}, "deltares-water-availability": {"productType": "deltares-water-availability"}, "modis-16A3GF-061": {"productType": "modis-16A3GF-061"}, "modis-21A2-061": {"productType": "modis-21A2-061"}, "us-census": {"productType": "us-census"}, "jrc-gsw": {"productType": "jrc-gsw"}, "deltares-floods": {"productType": "deltares-floods"}, "modis-43A4-061": {"productType": "modis-43A4-061"}, "modis-09Q1-061": {"productType": "modis-09Q1-061"}, "modis-14A1-061": {"productType": "modis-14A1-061"}, "hrea": {"productType": "hrea"}, "modis-13Q1-061": {"productType": "modis-13Q1-061"}, "modis-14A2-061": {"productType": "modis-14A2-061"}, "sentinel-2-l2a": {"productType": "sentinel-2-l2a"}, "modis-15A2H-061": {"productType": "modis-15A2H-061"}, "modis-11A1-061": {"productType": "modis-11A1-061"}, "modis-15A3H-061": {"productType": "modis-15A3H-061"}, "modis-10A2-061": {"productType": "modis-10A2-061"}, "modis-10A1-061": {"productType": "modis-10A1-061"}, "modis-13A1-061": {"productType": "modis-13A1-061"}, "daymet-daily-na": {"productType": "daymet-daily-na"}, "nrcan-landcover": {"productType": "nrcan-landcover"}, "ecmwf-forecast": {"productType": "ecmwf-forecast"}, "noaa-mrms-qpe-24h-pass2": {"productType": "noaa-mrms-qpe-24h-pass2"}, "sentinel-1-grd": {"productType": "sentinel-1-grd"}, "nasadem": {"productType": "nasadem"}, "io-lulc": {"productType": "io-lulc"}, "landsat-c2-l1": {"productType": "landsat-c2-l1"}, "drcog-lulc": {"productType": "drcog-lulc"}, "chesapeake-lc-7": {"productType": "chesapeake-lc-7"}, "chesapeake-lc-13": {"productType": "chesapeake-lc-13"}, "chesapeake-lu": {"productType": "chesapeake-lu"}, "noaa-mrms-qpe-1h-pass1": {"productType": "noaa-mrms-qpe-1h-pass1"}, "noaa-mrms-qpe-1h-pass2": {"productType": "noaa-mrms-qpe-1h-pass2"}, "noaa-nclimgrid-monthly": {"productType": "noaa-nclimgrid-monthly"}, "goes-glm": {"productType": "goes-glm"}, "usda-cdl": {"productType": "usda-cdl"}, "eclipse": {"productType": "eclipse"}, "esa-cci-lc": {"productType": "esa-cci-lc"}, "esa-cci-lc-netcdf": {"productType": "esa-cci-lc-netcdf"}, "fws-nwi": {"productType": "fws-nwi"}, "usgs-lcmap-conus-v13": {"productType": "usgs-lcmap-conus-v13"}, "usgs-lcmap-hawaii-v10": {"productType": "usgs-lcmap-hawaii-v10"}, "noaa-climate-normals-tabular": {"productType": "noaa-climate-normals-tabular"}, "noaa-climate-normals-netcdf": {"productType": "noaa-climate-normals-netcdf"}, "noaa-climate-normals-gridded": {"productType": "noaa-climate-normals-gridded"}, "aster-l1t": {"productType": "aster-l1t"}, "cil-gdpcir-cc-by-sa": {"productType": "cil-gdpcir-cc-by-sa"}, "cil-gdpcir-cc-by": {"productType": "cil-gdpcir-cc-by"}, "cil-gdpcir-cc0": {"productType": "cil-gdpcir-cc0"}, "ms-buildings": {"productType": "ms-buildings"}}, "product_types_config": {"daymet-annual-pr": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-pr,precipitation,puerto-rico,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual Puerto Rico", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-daily-hi": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-hi,hawaii,precipitation,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily Hawaii", "missionStartDate": "1980-01-01T12:00:00Z"}, "3dep-seamless": {"abstract": "U.S.-wide digital elevation data at horizontal resolutions ranging from one to sixty meters.\n\nThe [USGS 3D Elevation Program (3DEP) Datasets](https://www.usgs.gov/core-science-systems/ngp/3dep) from the [National Map](https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map) are the primary elevation data product produced and distributed by the USGS. The 3DEP program provides raster elevation data for the conterminous United States, Alaska, Hawaii, and the island territories, at a variety of spatial resolutions. The seamless DEM layers produced by the 3DEP program are updated frequently to integrate newly available, improved elevation source data. \n\nDEM layers are available nationally at grid spacings of 1 arc-second (approximately 30 meters) for the conterminous United States, and at approximately 1, 3, and 9 meters for parts of the United States. Most seamless DEM data for Alaska is available at a resolution of approximately 60 meters, where only lower resolution source data exist.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-seamless,dem,elevation,ned,usgs", "license": "PDDL-1.0", "title": "USGS 3DEP Seamless DEMs", "missionStartDate": "1925-01-01T00:00:00Z"}, "3dep-lidar-dsm": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Surface Model (DSM) using [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to output a collection of Cloud Optimized GeoTIFFs, removing all points that have been classified as noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dsm,cog,dsm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Surface Model", "missionStartDate": "2012-01-01T00:00:00Z"}, "fia": {"abstract": "Status and trends on U.S. forest location, health, growth, mortality, and production, from the U.S. Forest Service's [Forest Inventory and Analysis](https://www.fia.fs.fed.us/) (FIA) program.\n\nThe Forest Inventory and Analysis (FIA) dataset is a nationwide survey of the forest assets of the United States. The FIA research program has been in existence since 1928. FIA's primary objective is to determine the extent, condition, volume, growth, and use of trees on the nation's forest land.\n\nDomain: continental U.S., 1928-2018\n\nResolution: plot-level (irregular polygon)\n\nThis dataset was curated and brought to Azure by [CarbonPlan](https://carbonplan.org/).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,fia,forest,forest-service,species,usda", "license": "CC0-1.0", "title": "Forest Inventory and Analysis", "missionStartDate": "2020-06-01T00:00:00Z"}, "esa-worldcover": {"abstract": "The European Space Agency (ESA) [WorldCover](https://esa-worldcover.org/en) is a global land cover map for the year 2020 produced at 10 meter resolution based on the combination of [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) radar data and [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) imagery. The discrete classification map provides 11 classes and is defined using the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (FAO).\n\nThe WorldCover product was developed by a consortium of European service providers and research organizations. [VITO](https://remotesensing.vito.be/) (Belgium) is the prime contractor of the WorldCover consortium together with [Brockmann Consult](https://www.brockmann-consult.de/) (Germany), [CS SI](https://www.c-s.fr/) (France), [Gamma Remote Sensing AG](https://www.gamma-rs.ch/) (Switzerland), [International Institute for Applied Systems Analysis](https://www.iiasa.ac.at/) (Austria), and [Wageningen University](https://www.wur.nl/nl/Wageningen-University.htm) (The Netherlands).\n\n A [Product User Manual](https://esa-worldcover.s3.amazonaws.com/v100/2020/docs/WorldCover_PUM_V1.0.pdf) and [Product Validation Report](https://worldcover2020.esa.int/data/docs/WorldCover_PVR_V1.1.pdf) are available for further information. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": "c-sar,msi", "platform": null, "platformSerialIdentifier": "sentinel-1a,sentinel-1b,sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "c-sar,esa,esa-worldcover,global,land-cover,msi,sentinel,sentinel-1a,sentinel-1b,sentinel-2a,sentinel-2b", "license": "CC-BY-4.0", "title": "ESA WorldCover 2020", "missionStartDate": "2020-01-01T00:00:00Z"}, "sentinel-1-rtc": {"abstract": "The [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) mission is a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging. The Sentinel-1 Radiometrically Terrain Corrected (RTC) data in this collection is a radiometrically terrain corrected product derived from the [Ground Range Detected (GRD) Level-1](https://planetarycomputer.microsoft.com/dataset/sentinel-1-grd) products produced by the European Space Agency. The RTC processing is performed by [Catalyst](https://catalyst.earth/).\n\nRadiometric Terrain Correction accounts for terrain variations that affect both the position of a given point on the Earth's surface and the brightness of the radar return, as expressed in radar geometry. Without treatment, the hill-slope modulations of the radiometry threaten to overwhelm weaker thematic land cover-induced backscatter differences. Additionally, comparison of backscatter from multiple satellites, modes, or tracks loses meaning.\n\nA Planetary Computer account is required to retrieve SAS tokens to read the RTC data. See the [documentation](http://planetarycomputer.microsoft.com/docs/concepts/sas/#when-an-account-is-needed) for more information.\n\n### Methodology\n\nThe Sentinel-1 GRD product is converted to calibrated intensity using the conversion algorithm described in the ESA technical note ESA-EOPG-CSCOP-TN-0002, [Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF](https://ai4edatasetspublicassets.blob.core.windows.net/assets/pdfs/sentinel-1/S1-Radiometric-Calibration-V1.0.pdf). The flat earth calibration values for gamma correction (i.e. perpendicular to the radar line of sight) are extracted from the GRD metadata. The calibration coefficients are applied as a two-dimensional correction in range (by sample number) and azimuth (by time). All available polarizations are calibrated and written as separate layers of a single file. The calibrated SAR output is reprojected to nominal map orientation with north at the top and west to the left.\n\nThe data is then radiometrically terrain corrected using PlanetDEM as the elevation source. The correction algorithm is nominally based upon D. Small, [\u201cFlattening Gamma: Radiometric Terrain Correction for SAR Imagery\u201d](https://ai4edatasetspublicassets.blob.core.windows.net/assets/pdfs/sentinel-1/2011_Flattening_Gamma.pdf), IEEE Transactions on Geoscience and Remote Sensing, Vol 49, No 8., August 2011, pp 3081-3093. For each image scan line, the digital elevation model is interpolated to determine the elevation corresponding to the position associated with the known near slant range distance and arc length for each input pixel. The elevations at the four corners of each pixel are estimated using bilinear resampling. The four elevations are divided into two triangular facets and reprojected onto the plane perpendicular to the radar line of sight to provide an estimate of the area illuminated by the radar for each earth flattened pixel. The uncalibrated sum at each earth flattened pixel is normalized by dividing by the flat earth surface area. The adjustment for gamma intensity is given by dividing the normalized result by the cosine of the incident angle. Pixels which are not illuminated by the radar due to the viewing geometry are flagged as shadow.\n\nCalibrated data is then orthorectified to the appropriate UTM projection. The orthorectified output maintains the original sample sizes (in range and azimuth) and was not shifted to any specific grid.\n\nRTC data is processed only for the Interferometric Wide Swath (IW) mode, which is the main acquisition mode over land and satisfies the majority of service requirements.\n", "instrument": null, "platform": "Sentinel-1", "platformSerialIdentifier": "SENTINEL-1A,SENTINEL-1B", "processingLevel": null, "keywords": "c-band,copernicus,esa,rtc,sar,sentinel,sentinel-1,sentinel-1-rtc,sentinel-1a,sentinel-1b", "license": "CC-BY-4.0", "title": "Sentinel 1 Radiometrically Terrain Corrected (RTC)", "missionStartDate": "2014-10-10T00:28:21Z"}, "gridmet": {"abstract": "gridMET is a dataset of daily surface meteorological data at approximately four-kilometer resolution, covering the contiguous U.S. from 1979 to the present. These data can provide important inputs for ecological, agricultural, and hydrological models.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,gridmet,precipitation,temperature,vapor-pressure,water", "license": "CC0-1.0", "title": "gridMET", "missionStartDate": "1979-01-01T00:00:00Z"}, "daymet-annual-na": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-na,north-america,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual North America", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-monthly-na": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-na,north-america,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly North America", "missionStartDate": "1980-01-16T12:00:00Z"}, "daymet-annual-hi": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-hi,hawaii,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual Hawaii", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-monthly-hi": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-hi,hawaii,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly Hawaii", "missionStartDate": "1980-01-16T12:00:00Z"}, "daymet-monthly-pr": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-pr,precipitation,puerto-rico,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly Puerto Rico", "missionStartDate": "1980-01-16T12:00:00Z"}, "gnatsgo-tables": {"abstract": "This collection contains the table data for gNATSGO. This table data can be used to determine the values of raster data cells for Items in the [gNATSGO Rasters](https://planetarycomputer.microsoft.com/dataset/gnatsgo-rasters) Collection.\n\nThe gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS Soil & Plant Science Division (SPSD) composite database that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase.\n\nSSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods.\n\nThe gNATSGO database is composed primarily of SSURGO data, but STATSGO2 data was used to fill in the gaps. The RSSs are newer product with relatively limited spatial extent. These RSSs were merged into the gNATSGO after combining the SSURGO and STATSGO2 data. The extent of RSS is expected to increase in the coming years.\n\nSee the [official documentation](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gnatsgo-tables,natsgo,rss,soils,ssurgo,statsgo2,united-states,usda", "license": "CC0-1.0", "title": "gNATSGO Soil Database - Tables", "missionStartDate": "2020-07-01T00:00:00Z"}, "hgb": {"abstract": "This dataset provides temporally consistent and harmonized global maps of aboveground and belowground biomass carbon density for the year 2010 at 300m resolution. The aboveground biomass map integrates land-cover-specific, remotely sensed maps of woody, grassland, cropland, and tundra biomass. Input maps were amassed from the published literature and, where necessary, updated to cover the focal extent or time period. The belowground biomass map similarly integrates matching maps derived from each aboveground biomass map and land-cover-specific empirical models. Aboveground and belowground maps were then integrated separately using ancillary maps of percent tree/land cover and a rule-based decision tree. Maps reporting the accumulated uncertainty of pixel-level estimates are also provided.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,hgb,ornl", "license": "proprietary", "title": "HGB: Harmonized Global Biomass for 2010", "missionStartDate": "2010-12-31T00:00:00Z"}, "cop-dem-glo-30": {"abstract": "The Copernicus DEM is a digital surface model (DSM), which represents the surface of the Earth including buildings, infrastructure, and vegetation. This DSM is based on radar satellite data acquired during the TanDEM-X Mission, which was funded by a public-private partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space.\n\nCopernicus DEM is available at both 30-meter and 90-meter resolution; this dataset has a horizontal resolution of approximately 30 meters.\n\nSee the [Product Handbook](https://object.cloud.sdsc.edu/v1/AUTH_opentopography/www/metadata/Copernicus_metadata.pdf) for more information.\n\nSee the dataset page on OpenTopography: \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": "tandem-x", "processingLevel": null, "keywords": "cop-dem-glo-30,copernicus,dem,dsm,elevation,tandem-x", "license": "proprietary", "title": "Copernicus DEM GLO-30", "missionStartDate": "2021-04-22T00:00:00Z"}, "cop-dem-glo-90": {"abstract": "The Copernicus DEM is a digital surface model (DSM), which represents the surface of the Earth including buildings, infrastructure, and vegetation. This DSM is based on radar satellite data acquired during the TanDEM-X Mission, which was funded by a public-private partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space.\n\nCopernicus DEM is available at both 30-meter and 90-meter resolution; this dataset has a horizontal resolution of approximately 90 meters.\n\nSee the [Product Handbook](https://object.cloud.sdsc.edu/v1/AUTH_opentopography/www/metadata/Copernicus_metadata.pdf) for more information.\n\nSee the dataset page on OpenTopography: \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": "tandem-x", "processingLevel": null, "keywords": "cop-dem-glo-90,copernicus,dem,elevation,tandem-x", "license": "proprietary", "title": "Copernicus DEM GLO-90", "missionStartDate": "2021-04-22T00:00:00Z"}, "goes-cmi": {"abstract": "The GOES-R Advanced Baseline Imager (ABI) L2 Cloud and Moisture Imagery product provides 16 reflective and emissive bands at high temporal cadence over the Western Hemisphere.\n\nThe GOES-R series is the latest in the Geostationary Operational Environmental Satellites (GOES) program, which has been operated in a collaborative effort by NOAA and NASA since 1975. The operational GOES-R Satellites, GOES-16, GOES-17, and GOES-18, capture 16-band imagery from geostationary orbits over the Western Hemisphere via the Advance Baseline Imager (ABI) radiometer. The ABI captures 2 visible, 4 near-infrared, and 10 infrared channels at resolutions between 0.5km and 2km.\n\n### Geographic coverage\n\nThe ABI captures three levels of coverage, each at a different temporal cadence depending on the modes described below. The geographic coverage for each image is described by the `goes:image-type` STAC Item property.\n\n- _FULL DISK_: a circular image depicting nearly full coverage of the Western Hemisphere.\n- _CONUS_: a 3,000 (lat) by 5,000 (lon) km rectangular image depicting the Continental U.S. (GOES-16) or the Pacific Ocean including Hawaii (GOES-17).\n- _MESOSCALE_: a 1,000 by 1,000 km rectangular image. GOES-16 and 17 both alternate between two different mesoscale geographic regions.\n\n### Modes\n\nThere are three standard scanning modes for the ABI instrument: Mode 3, Mode 4, and Mode 6.\n\n- Mode _3_ consists of one observation of the full disk scene of the Earth, three observations of the continental United States (CONUS), and thirty observations for each of two distinct mesoscale views every fifteen minutes.\n- Mode _4_ consists of the observation of the full disk scene every five minutes.\n- Mode _6_ consists of one observation of the full disk scene of the Earth, two observations of the continental United States (CONUS), and twenty observations for each of two distinct mesoscale views every ten minutes.\n\nThe mode that each image was captured with is described by the `goes:mode` STAC Item property.\n\nSee this [ABI Scan Mode Demonstration](https://youtu.be/_c5H6R-M0s8) video for an idea of how the ABI scans multiple geographic regions over time.\n\n### Cloud and Moisture Imagery\n\nThe Cloud and Moisture Imagery product contains one or more images with pixel values identifying \"brightness values\" that are scaled to support visual analysis. Cloud and Moisture Imagery product (CMIP) files are generated for each of the sixteen ABI reflective and emissive bands. In addition, there is a multi-band product file that includes the imagery at all bands (MCMIP).\n\nThe Planetary Computer STAC Collection `goes-cmi` captures both the CMIP and MCMIP product files into individual STAC Items for each observation from a GOES-R satellite. It contains the original CMIP and MCMIP NetCDF files, as well as cloud-optimized GeoTIFF (COG) exports of the data from each MCMIP band (2km); the full-resolution CMIP band for bands 1, 2, 3, and 5; and a Web Mercator COG of bands 1, 2 and 3, which are useful for rendering.\n\nThis product is not in a standard coordinate reference system (CRS), which can cause issues with some tooling that does not handle non-standard large geographic regions.\n\n### For more information\n- [Beginner\u2019s Guide to GOES-R Series Data](https://www.goes-r.gov/downloads/resources/documents/Beginners_Guide_to_GOES-R_Series_Data.pdf)\n- [GOES-R Series Product Definition and Users\u2019 Guide: Volume 5 (Level 2A+ Products)](https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf) ([Spanish verison](https://github.com/NOAA-Big-Data-Program/bdp-data-docs/raw/main/GOES/QuickGuides/Spanish/Guia%20introductoria%20para%20datos%20de%20la%20serie%20GOES-R%20V1.1%20FINAL2%20-%20Copy.pdf))\n\n", "instrument": "ABI", "platform": null, "platformSerialIdentifier": "GOES-16,GOES-17,GOES-18", "processingLevel": null, "keywords": "abi,cloud,goes,goes-16,goes-17,goes-18,goes-cmi,moisture,nasa,noaa,satellite", "license": "proprietary", "title": "GOES-R Cloud & Moisture Imagery", "missionStartDate": "2017-02-28T00:16:52Z"}, "terraclimate": {"abstract": "[TerraClimate](http://www.climatologylab.org/terraclimate.html) is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958 to the present. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. This dataset is provided in [Zarr](https://zarr.readthedocs.io/) format.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,precipitation,temperature,terraclimate,vapor-pressure,water", "license": "CC0-1.0", "title": "TerraClimate", "missionStartDate": "1958-01-01T00:00:00Z"}, "nasa-nex-gddp-cmip6": {"abstract": "The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four \u201cTier 1\u201d greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed through the Earth System Grid Federation. The purpose of this dataset is to provide a set of global, high resolution, bias-corrected climate change projections that can be used to evaluate climate change impacts on processes that are sensitive to finer-scale climate gradients and the effects of local topography on climate conditions.\n\nThe [NASA Center for Climate Simulation](https://www.nccs.nasa.gov/) maintains the [next-gddp-cmip6 product page](https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6) where you can find more information about these datasets. Users are encouraged to review the [technote](https://www.nccs.nasa.gov/sites/default/files/NEX-GDDP-CMIP6-Tech_Note.pdf), provided alongside the data set, where more detailed information, references and acknowledgements can be found.\n\nThis collection contains many NetCDF files. There is one NetCDF file per `(model, scenario, variable, year)` tuple.\n\n- **model** is the name of a modeling group (e.g. \"ACCESS-CM-2\"). See the `cmip6:model` summary in the STAC collection for a full list of models.\n- **scenario** is one of \"historical\", \"ssp245\" or \"ssp585\".\n- **variable** is one of \"hurs\", \"huss\", \"pr\", \"rlds\", \"rsds\", \"sfcWind\", \"tas\", \"tasmax\", \"tasmin\".\n- **year** depends on the value of *scenario*. For \"historical\", the values range from 1950 to 2014 (inclusive). For \"ssp245\" and \"ssp585\", the years range from 2015 to 2100 (inclusive).\n\nIn addition to the NetCDF files, we provide some *experimental* **reference files** as collection-level dataset assets. These are JSON files implementing the [references specification](https://fsspec.github.io/kerchunk/spec.html).\nThese files include the positions of data variables within the binary NetCDF files, which can speed up reading the metadata. See the example notebook for more.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,cmip6,humidity,nasa,nasa-nex-gddp-cmip6,precipitation,temperature", "license": "proprietary", "title": "Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)", "missionStartDate": "1950-01-01T00:00:00Z"}, "gpm-imerg-hhr": {"abstract": "The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm combines information from the [GPM satellite constellation](https://gpm.nasa.gov/missions/gpm/constellation) to estimate precipitation over the majority of the Earth's surface. This algorithm is particularly valuable over the majority of the Earth's surface that lacks precipitation-measuring instruments on the ground. Now in the latest Version 06 release of IMERG the algorithm fuses the early precipitation estimates collected during the operation of the TRMM satellite (2000 - 2015) with more recent precipitation estimates collected during operation of the GPM satellite (2014 - present). The longer the record, the more valuable it is, as researchers and application developers will attest. By being able to compare and contrast past and present data, researchers are better informed to make climate and weather models more accurate, better understand normal and extreme rain and snowfall around the world, and strengthen applications for current and future disasters, disease, resource management, energy production and food security.\n\nFor more, see the [IMERG homepage](https://gpm.nasa.gov/data/imerg) The [IMERG Technical documentation](https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_doc_201006.pdf) provides more information on the algorithm, input datasets, and output products.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gpm,gpm-imerg-hhr,imerg,precipitation", "license": "proprietary", "title": "GPM IMERG", "missionStartDate": "2000-06-01T00:00:00Z"}, "io-lulc-9-class": {"abstract": "Time series of annual global maps of land use and land cover (LULC). It currently has data from 2017-2021. The maps are derived from ESA Sentinel-2 imagery at 10m resolution. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year.\n\nThis dataset was generated by [Impact Observatory](http://impactobservatory.com/), who used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. The global map was produced by applying this model to the Sentinel-2 annual scene collections on the Planetary Computer. Each of the maps has an assessed average accuracy of over 75%.\n\nThis map uses an updated model from the [10-class model](https://planetarycomputer.microsoft.com/dataset/io-lulc) and combines Grass(formerly class 3) and Scrub (formerly class 6) into a single Rangeland class (class 11). The original Esri 2020 Land Cover collection uses 10 classes (Grass and Scrub separate) and an older version of the underlying deep learning model. The Esri 2020 Land Cover map was also produced by Impact Observatory. The map remains available for use in existing applications. New applications should use the updated version of 2020 once it is available in this collection, especially when using data from multiple years of this time series, to ensure consistent classification.\n\nAll years are available under a Creative Commons BY-4.0.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,io-lulc-9-class,land-cover,land-use,sentinel", "license": "CC-BY-4.0", "title": "10m Annual Land Use Land Cover (9-class)", "missionStartDate": "2017-01-01T00:00:00Z"}, "gnatsgo-rasters": {"abstract": "This collection contains the raster data for gNATSGO. In order to use the map unit values contained in the `mukey` raster asset, you'll need to join to tables represented as Items in the [gNATSGO Tables](https://planetarycomputer.microsoft.com/dataset/gnatsgo-tables) Collection. Many items have commonly used values encoded in additional raster assets.\n\nThe gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS Soil & Plant Science Division (SPSD) composite database that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase.\n\nSSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods.\n\nThe gNATSGO database is composed primarily of SSURGO data, but STATSGO2 data was used to fill in the gaps. The RSSs are newer product with relatively limited spatial extent. These RSSs were merged into the gNATSGO after combining the SSURGO and STATSGO2 data. The extent of RSS is expected to increase in the coming years.\n\nSee the [official documentation](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gnatsgo-rasters,natsgo,rss,soils,ssurgo,statsgo2,united-states,usda", "license": "CC0-1.0", "title": "gNATSGO Soil Database - Rasters", "missionStartDate": "2020-07-01T00:00:00Z"}, "3dep-lidar-hag": {"abstract": "This COG type is generated using the Z dimension of the [COPC data](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc) data and removes noise, water, and using [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf) followed by [pdal.filters.hag_nn](https://pdal.io/stages/filters.hag_nn.html#filters-hag-nn).\n\nThe Height Above Ground Nearest Neighbor filter takes as input a point cloud with Classification set to 2 for ground points. It creates a new dimension, HeightAboveGround, that contains the normalized height values.\n\nGround points may be generated with [`pdal.filters.pmf`](https://pdal.io/stages/filters.pmf.html#filters-pmf) or [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf), but you can use any method you choose, as long as the ground returns are marked.\n\nNormalized heights are a commonly used attribute of point cloud data. This can also be referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it is simply a measure of a point's relative height as opposed to its raw elevation value.\n\nThe filter finds the number of ground points nearest to the non-ground point under consideration. It calculates an average ground height weighted by the distance of each ground point from the non-ground point. The HeightAboveGround is the difference between the Z value of the non-ground point and the interpolated ground height.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-hag,cog,elevation,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Height above Ground", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-intensity": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the pulse return magnitude.\n\nThe values are based on the Intensity [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-intensity,cog,intensity,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Intensity", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-pointsourceid": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the file source ID from which the point originated. Zero indicates that the point originated in the current file.\n\nThis values are based on the PointSourceId [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-pointsourceid,cog,pointsourceid,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Point Source", "missionStartDate": "2012-01-01T00:00:00Z"}, "mtbs": {"abstract": "[Monitoring Trends in Burn Severity](https://www.mtbs.gov/) (MTBS) is an inter-agency program whose goal is to consistently map the burn severity and extent of large fires across the United States from 1984 to the present. This includes all fires 1000 acres or greater in the Western United States and 500 acres or greater in the Eastern United States. The burn severity mosaics in this dataset consist of thematic raster images of MTBS burn severity classes for all currently completed MTBS fires for the continental United States and Alaska.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "fire,forest,mtbs,usda,usfs,usgs", "license": "proprietary", "title": "MTBS: Monitoring Trends in Burn Severity", "missionStartDate": "1984-12-31T00:00:00Z"}, "landsat-8-c2-l2": {"abstract": "The [Landsat](https://landsat.gsfc.nasa.gov/) program has been imaging the Earth since 1972; it provides a comprehensive, continuous archive of the Earth's surface. [Landsat 8](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8) is the most recent satellite in the Landsat series. Launched in 2013, Landsat 8 captures data in eleven spectral bands: ten optical/IR bands from the [Operational Land Imager](https://landsat.gsfc.nasa.gov/landsat-8/operational-land-imager) (OLI) instrument, and two thermal bands from the [Thermal Infrared Sensor](https://landsat.gsfc.nasa.gov/landsat-8/thermal-infrared-sensor-tirs) (TIRS) instrument.\n\nThis dataset represents the global archive of Level-2 Landsat 8 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2). Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-8", "processingLevel": null, "keywords": "global,imagery,landsat,landsat-8,landsat-8-c2-l2,nasa,oli,reflectance,satellite,tirs,usgs", "license": "proprietary", "title": "Landsat 8 Collection 2 Level-2", "missionStartDate": "2013-04-11T00:00:00Z"}, "noaa-c-cap": {"abstract": "Nationally standardized, raster-based inventories of land cover for the coastal areas of the U.S. Data are derived, through the Coastal Change Analysis Program, from the analysis of multiple dates of remotely sensed imagery. Two file types are available: individual dates that supply a wall-to-wall map, and change files that compare one date to another. The use of standardized data and procedures assures consistency through time and across geographies. C-CAP data forms the coastal expression of the National Land Cover Database (NLCD) and the A-16 land cover theme of the National Spatial Data Infrastructure. The data are updated every 5 years.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "coastal,land-cover,land-use,noaa,noaa-c-cap", "license": "proprietary", "title": "C-CAP Regional Land Cover and Change", "missionStartDate": "1975-01-01T00:00:00Z"}, "3dep-lidar-copc": {"abstract": "This collection contains source data from the [USGS 3DEP program](https://www.usgs.gov/3d-elevation-program) reformatted into the [COPC](https://copc.io) format. A COPC file is a LAZ 1.4 file that stores point data organized in a clustered octree. It contains a VLR that describes the octree organization of data that are stored in LAZ 1.4 chunks. The end product is a one-to-one mapping of LAZ to UTM-reprojected COPC files.\n\nLAZ data is geospatial [LiDAR point cloud](https://en.wikipedia.org/wiki/Point_cloud) (LPC) content stored in the compressed [LASzip](https://laszip.org?) format. Data were reorganized and stored in LAZ-compatible [COPC](https://copc.io) organization for use in Planetary Computer, which supports incremental spatial access and cloud streaming.\n\nLPC can be summarized for construction of digital terrain models (DTM), filtered for extraction of features like vegetation and buildings, and visualized to provide a point cloud map of the physical spaces the laser scanner interacted with. LPC content from 3DEP is used to compute and extract a variety of landscape characterization products, and some of them are provided by Planetary Computer, including Height Above Ground, Relative Intensity Image, and DTM and Digital Surface Models.\n\nThe LAZ tiles represent a one-to-one mapping of original tiled content as provided by the [USGS 3DEP program](https://www.usgs.gov/3d-elevation-program), with the exception that the data were reprojected and normalized into appropriate UTM zones for their location without adjustment to the vertical datum. In some cases, vertical datum description may not match actual data values, especially for pre-2010 USGS 3DEP point cloud data.\n\nIn addition to these COPC files, various higher-level derived products are available as Cloud Optimized GeoTIFFs in [other collections](https://planetarycomputer.microsoft.com/dataset/group/3dep-lidar).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-copc,cog,point-cloud,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Point Cloud", "missionStartDate": "2012-01-01T00:00:00Z"}, "modis-64A1-061": {"abstract": "The Terra and Aqua combined MCD64A1 Version 6.1 Burned Area data product is a monthly, global gridded 500 meter (m) product containing per-pixel burned-area and quality information. The MCD64A1 burned-area mapping approach employs 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance imagery coupled with 1 kilometer (km) MODIS active fire observations. The algorithm uses a burn sensitive Vegetation Index (VI) to create dynamic thresholds that are applied to the composite data. The VI is derived from MODIS shortwave infrared atmospherically corrected surface reflectance bands 5 and 7 with a measure of temporal texture. The algorithm identifies the date of burn for the 500 m grid cells within each individual MODIS tile. The date is encoded in a single data layer as the ordinal day of the calendar year on which the burn occurred with values assigned to unburned land pixels and additional special values reserved for missing data and water grid cells. The data layers provided in the MCD64A1 product include Burn Date, Burn Data Uncertainty, Quality Assurance, along with First Day and Last Day of reliable change detection of the year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,imagery,mcd64a1,modis,modis-64a1-061,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Burned Area Monthly", "missionStartDate": "2000-11-01T00:00:00Z"}, "alos-fnf-mosaic": {"abstract": "The global 25m resolution SAR mosaics and forest/non-forest maps are free and open annual datasets generated by [JAXA](https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm) using the L-band Synthetic Aperture Radar sensors on the Advanced Land Observing Satellite-2 (ALOS-2 PALSAR-2), the Advanced Land Observing Satellite (ALOS PALSAR) and the Japanese Earth Resources Satellite-1 (JERS-1 SAR).\n\nThe global forest/non-forest maps (FNF) were generated by a Random Forest machine learning-based classification method, with the re-processed global 25m resolution [PALSAR-2 mosaic dataset](https://planetarycomputer.microsoft.com/dataset/alos-palsar-mosaic) (Ver. 2.0.0) as input. Here, the \"forest\" is defined as the tree covered land with an area larger than 0.5 ha and a canopy cover of over 10 %, in accordance with the FAO definition of forest. The classification results are presented in four categories, with two categories of forest areas: forests with a canopy cover of 90 % or more and forests with a canopy cover of 10 % to 90 %, depending on the density of the forest area.\n\nSee the [Product Description](https://www.eorc.jaxa.jp/ALOS/en/dataset/pdf/DatasetDescription_PALSAR2_FNF_V200.pdf) for more details.\n", "instrument": "PALSAR,PALSAR-2", "platform": null, "platformSerialIdentifier": "ALOS,ALOS-2", "processingLevel": null, "keywords": "alos,alos-2,alos-fnf-mosaic,forest,global,jaxa,land-cover,palsar,palsar-2", "license": "proprietary", "title": "ALOS Forest/Non-Forest Annual Mosaic", "missionStartDate": "2015-01-01T00:00:00Z"}, "3dep-lidar-returns": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the number of returns for a given pulse.\n\nThis values are based on the PointSourceId [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.\n\nThe values are based on the NumberOfReturns [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-returns,cog,numberofreturns,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Returns", "missionStartDate": "2012-01-01T00:00:00Z"}, "mobi": {"abstract": "The [Map of Biodiversity Importance](https://www.natureserve.org/conservation-tools/projects/map-biodiversity-importance) (MoBI) consists of raster maps that combine habitat information for 2,216 imperiled species occurring in the conterminous United States, using weightings based on range size and degree of protection to identify areas of high importance for biodiversity conservation. Species included in the project are those which, as of September 2018, had a global conservation status of G1 (critical imperiled) or G2 (imperiled) or which are listed as threatened or endangered at the full species level under the United States Endangered Species Act. Taxonomic groups included in the project are vertebrates (birds, mammals, amphibians, reptiles, turtles, crocodilians, and freshwater and anadromous fishes), vascular plants, selected aquatic invertebrates (freshwater mussels and crayfish) and selected pollinators (bumblebees, butterflies, and skippers).\n\nThere are three types of spatial data provided, described in more detail below: species richness, range-size rarity, and protection-weighted range-size rarity. For each type, this data set includes five different layers – one for all species combined, and four additional layers that break the data down by taxonomic group (vertebrates, plants, freshwater invertebrates, and pollinators) – for a total of fifteen layers.\n\nThese data layers are intended to identify areas of high potential value for on-the-ground biodiversity protection efforts. As a synthesis of predictive models, they cannot guarantee either the presence or absence of imperiled species at a given location. For site-specific decision-making, these data should be used in conjunction with field surveys and/or documented occurrence data, such as is available from the [NatureServe Network](https://www.natureserve.org/natureserve-network).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biodiversity,mobi,natureserve,united-states", "license": "proprietary", "title": "MoBI: Map of Biodiversity Importance", "missionStartDate": "2020-04-14T00:00:00Z"}, "landsat-c2-l2": {"abstract": "Landsat Collection 2 Level-2 [Science Products](https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products), consisting of atmospherically corrected [surface reflectance](https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance) and [surface temperature](https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature) image data. Collection 2 Level-2 Science Products are available from August 22, 1982 to present.\n\nThis dataset represents the global archive of Level-2 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2) acquired by the [Thematic Mapper](https://landsat.gsfc.nasa.gov/thematic-mapper/) onboard Landsat 4 and 5, the [Enhanced Thematic Mapper](https://landsat.gsfc.nasa.gov/the-enhanced-thematic-mapper-plus-etm/) onboard Landsat 7, and the [Operatational Land Imager](https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/operational-land-imager/) and [Thermal Infrared Sensor](https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/thermal-infrared-sensor/) onboard Landsat 8 and 9. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "tm,etm+,oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-4,landsat-5,landsat-7,landsat-8,landsat-9", "processingLevel": null, "keywords": "etm+,global,imagery,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2-l2,nasa,oli,reflectance,satellite,temperature,tirs,tm,usgs", "license": "proprietary", "title": "Landsat Collection 2 Level-2", "missionStartDate": "1982-08-22T00:00:00Z"}, "era5-pds": {"abstract": "ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate\ncovering the period from January 1950 to present. ERA5 is produced by the\nCopernicus Climate Change Service (C3S) at ECMWF.\n\nReanalysis combines model data with observations from across the world into a\nglobally complete and consistent dataset using the laws of physics. This\nprinciple, called data assimilation, is based on the method used by numerical\nweather prediction centres, where every so many hours (12 hours at ECMWF) a\nprevious forecast is combined with newly available observations in an optimal\nway to produce a new best estimate of the state of the atmosphere, called\nanalysis, from which an updated, improved forecast is issued. Reanalysis works\nin the same way, but at reduced resolution to allow for the provision of a\ndataset spanning back several decades. Reanalysis does not have the constraint\nof issuing timely forecasts, so there is more time to collect observations, and\nwhen going further back in time, to allow for the ingestion of improved versions\nof the original observations, which all benefit the quality of the reanalysis\nproduct.\n\nThis dataset was converted to Zarr by [Planet OS](https://planetos.com/).\nSee [their documentation](https://github.com/planet-os/notebooks/blob/master/aws/era5-pds.md)\nfor more.\n\n## STAC Metadata\n\nTwo types of data variables are provided: \"forecast\" (`fc`) and \"analysis\" (`an`).\n\n* An **analysis**, of the atmospheric conditions, is a blend of observations\n with a previous forecast. An analysis can only provide\n [instantaneous](https://confluence.ecmwf.int/display/CKB/Model+grid+box+and+time+step)\n parameters (parameters valid at a specific time, e.g temperature at 12:00),\n but not accumulated parameters, mean rates or min/max parameters.\n* A **forecast** starts with an analysis at a specific time (the 'initialization\n time'), and a model computes the atmospheric conditions for a number of\n 'forecast steps', at increasing 'validity times', into the future. A forecast\n can provide\n [instantaneous](https://confluence.ecmwf.int/display/CKB/Model+grid+box+and+time+step)\n parameters, accumulated parameters, mean rates, and min/max parameters.\n\nEach [STAC](https://stacspec.org/) item in this collection covers a single month\nand the entire globe. There are two STAC items per month, one for each type of data\nvariable (`fc` and `an`). The STAC items include an `ecmwf:kind` properties to\nindicate which kind of variables that STAC item catalogs.\n\n## How to acknowledge, cite and refer to ERA5\n\nAll users of data on the Climate Data Store (CDS) disks (using either the web interface or the CDS API) must provide clear and visible attribution to the Copernicus programme and are asked to cite and reference the dataset provider:\n\nAcknowledge according to the [licence to use Copernicus Products](https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf).\n\nCite each dataset used as indicated on the relevant CDS entries (see link to \"Citation\" under References on the Overview page of the dataset entry).\n\nThroughout the content of your publication, the dataset used is referred to as Author (YYYY).\n\nThe 3-steps procedure above is illustrated with this example: [Use Case 2: ERA5 hourly data on single levels from 1979 to present](https://confluence.ecmwf.int/display/CKB/Use+Case+2%3A+ERA5+hourly+data+on+single+levels+from+1979+to+present).\n\nFor complete details, please refer to [How to acknowledge and cite a Climate Data Store (CDS) catalogue entry and the data published as part of it](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "ecmwf,era5,era5-pds,precipitation,reanalysis,temperature,weather", "license": "proprietary", "title": "ERA5 - PDS", "missionStartDate": "1979-01-01T00:00:00Z"}, "naip": {"abstract": "The [National Agriculture Imagery Program](https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/) (NAIP) provides U.S.-wide, high-resolution aerial imagery, with four spectral bands (R, G, B, IR). NAIP is administered by the [Aerial Field Photography Office](https://www.fsa.usda.gov/programs-and-services/aerial-photography/) (AFPO) within the [US Department of Agriculture](https://www.usda.gov/) (USDA). Data are captured at least once every three years for each state. This dataset represents NAIP data from 2010-present, in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "aerial,afpo,agriculture,imagery,naip,united-states,usda", "license": "proprietary", "title": "NAIP: National Agriculture Imagery Program", "missionStartDate": "2010-01-01T00:00:00Z"}, "chloris-biomass": {"abstract": "The Chloris Global Biomass 2003 - 2019 dataset provides estimates of stock and change in aboveground biomass for Earth's terrestrial woody vegetation ecosystems. It covers the period 2003 - 2019, at annual time steps. The global dataset has a circa 4.6 km spatial resolution.\n\nThe maps and data sets were generated by combining multiple remote sensing measurements from space borne satellites, processed using state-of-the-art machine learning and statistical methods, validated with field data from multiple countries. The dataset provides direct estimates of aboveground stock and change, and are not based on land use or land cover area change, and as such they include gains and losses of carbon stock in all types of woody vegetation - whether natural or plantations.\n\nAnnual stocks are expressed in units of tons of biomass. Annual changes in stocks are expressed in units of CO2 equivalent, i.e., the amount of CO2 released from or taken up by terrestrial ecosystems for that specific pixel.\n\nThe spatial data sets are available on [Microsoft\u2019s Planetary Computer](https://planetarycomputer.microsoft.com/dataset/chloris-biomass) under a Creative Common license of the type Attribution-Non Commercial-Share Alike [CC BY-NC-SA](https://spdx.org/licenses/CC-BY-NC-SA-4.0.html).\n\n[Chloris Geospatial](https://chloris.earth/) is a mission-driven technology company that develops software and data products on the state of natural capital for use by business, governments, and the social sector.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,chloris,chloris-biomass,modis", "license": "CC-BY-NC-SA-4.0", "title": "Chloris Biomass", "missionStartDate": "2003-07-31T00:00:00Z"}, "kaza-hydroforecast": {"abstract": "This dataset is a daily updated set of HydroForecast seasonal river flow forecasts at six locations in the Kwando and Upper Zambezi river basins. More details about the locations, project context, and to interactively view current and previous forecasts, visit our [public website](https://dashboard.hydroforecast.com/public/wwf-kaza).\n\n## Flow forecast dataset and model description\n\n[HydroForecast](https://www.upstream.tech/hydroforecast) is a theory-guided machine learning hydrologic model that predicts streamflow in basins across the world. For the Kwando and Upper Zambezi, HydroForecast makes daily predictions of streamflow rates using a [seasonal analog approach](https://support.upstream.tech/article/125-seasonal-analog-model-a-technical-overview). The model's output is probabilistic and the mean, median and a range of quantiles are available at each forecast step.\n\nThe underlying model has the following attributes: \n\n* Timestep: 10 days\n* Horizon: 10 to 180 days \n* Update frequency: daily\n* Units: cubic meters per second (m\u00b3/s)\n \n## Site details\n\nThe model produces output for six locations in the Kwando and Upper Zambezi river basins.\n\n* Upper Zambezi sites\n * Zambezi at Chavuma\n * Luanginga at Kalabo\n* Kwando basin sites\n * Kwando at Kongola -- total basin flows\n * Kwando Sub-basin 1\n * Kwando Sub-basin 2 \n * Kwando Sub-basin 3\n * Kwando Sub-basin 4\n * Kwando Kongola Sub-basin\n\n## STAC metadata\n\nThere is one STAC item per location. Each STAC item has a single asset linking to a Parquet file in Azure Blob Storage.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "hydroforecast,hydrology,kaza-hydroforecast,streamflow,upstream-tech,water", "license": "CDLA-Sharing-1.0", "title": "HydroForecast - Kwando & Upper Zambezi Rivers", "missionStartDate": "2022-01-01T00:00:00Z"}, "planet-nicfi-analytic": {"abstract": "*Note: Assets in this collection are only available to winners of the [GEO-Microsoft Planetary Computer RFP](https://www.earthobservations.org/geo_blog_obs.php?id=528). Others wishing to use the data can sign up and access it from Planet at [https://www.planet.com/nicfi/](https://www.planet.com/nicfi/) and email [planetarycomputer@microsoft.com](mailto:planetarycomputer@microsoft.com).*\n\nThrough Norway\u2019s International Climate & Forests Initiative (NICFI), users can access Planet\u2019s high-resolution, analysis-ready mosaics of the world\u2019s tropics in order to help reduce and reverse the loss of tropical forests, combat climate change, conserve biodiversity, and facilitate sustainable development.\n\nIn support of NICFI\u2019s mission, you can use this data for a number of projects including, but not limited to:\n\n* Advance scientific research about the world\u2019s tropical forests and the critical services they provide.\n* Implement and improve policies for sustainable forest management and land use in developing tropical forest countries and jurisdictions.\n* Increase transparency and accountability in the tropics.\n* Protect and improve the rights of indigenous peoples and local communities in tropical forest countries.\n* Innovate solutions towards reducing pressure on forests from global commodities and financial markets.\n* In short, the primary purpose of the NICFI Program is to support reducing and reversing the loss of tropical forests, contributing to combating climate change, conserving biodiversity, contributing to forest regrowth, restoration, and enhancement, and facilitating sustainable development, all of which must be Non-Commercial Use.\n\nTo learn how more about the NICFI program, streaming and downloading basemaps please read the [NICFI Data Program User Guide](https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf).\n\nThis collection contains both monthly and biannual mosaics. Biannual mosaics are available from December 2015 - August 2020. Monthly mosaics are available from September 2020. The STAC items include a `planet-nicfi:cadence` field indicating the type of mosaic.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "imagery,nicfi,planet,planet-nicfi-analytic,satellite,tropics", "license": "proprietary", "title": "Planet-NICFI Basemaps (Analytic)", "missionStartDate": "2015-12-01T00:00:00Z"}, "modis-17A2H-061": {"abstract": "The Version 6.1 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter (m) pixel size based on the radiation use efficiency concept that can be potentially used as inputs to data models to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product includes information about GPP and Net Photosynthesis (PSN). The PSN band values are the GPP less the Maintenance Respiration (MR). The data product also contains a PSN Quality Control (QC) layer. The quality layer contains quality information for both the GPP and the PSN.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a2h,modis,modis-17a2h-061,myd17a2h,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Gross Primary Productivity 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-11A2-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity 8-Day Version 6.1 product provides an average 8-day per-pixel Land Surface Temperature and Emissivity (LST&E) with a 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. Each pixel value in the MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8-day period. The 8-day compositing period was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua platforms. Provided along with the daytime and nighttime surface temperature bands are associated quality control assessments, observation times, view zenith angles, and clear-sky coverages along with bands 31 and 32 emissivities from land cover types.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod11a2,modis,modis-11a2-061,myd11a2,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/Emissivity 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "daymet-daily-pr": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-pr,precipitation,puerto-rico,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily Puerto Rico", "missionStartDate": "1980-01-01T12:00:00Z"}, "3dep-lidar-dtm-native": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Terrain Model (DTM) using the vendor provided (native) ground classification and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to output a collection of Cloud Optimized GeoTIFFs, removing all points that have been classified as noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dtm-native,cog,dtm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Terrain Model (Native)", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-classification": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It uses the [ASPRS](https://www.asprs.org/) (American Society for Photogrammetry and Remote Sensing) [Lidar point classification](https://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/lidar-point-classification.htm). See [LAS specification](https://www.ogc.org/standards/LAS) for details.\n\nThis COG type is based on the Classification [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.range`](https://pdal.io/stages/filters.range.html) to select a subset of interesting classifications. Do note that not all LiDAR collections contain a full compliment of classification labels.\nTo remove outliers, the PDAL pipeline uses a noise filter and then outputs the Classification dimension.\n\nThe STAC collection implements the [`item_assets`](https://github.com/stac-extensions/item-assets) and [`classification`](https://github.com/stac-extensions/classification) extensions. These classes are displayed in the \"Item assets\" below. You can programmatically access the full list of class values and descriptions using the `classification:classes` field form the `data` asset on the STAC collection.\n\nClassification rasters were produced as a subset of LiDAR classification categories:\n\n```\n0, Never Classified\n1, Unclassified\n2, Ground\n3, Low Vegetation\n4, Medium Vegetation\n5, High Vegetation\n6, Building\n9, Water\n10, Rail\n11, Road\n17, Bridge Deck\n```\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-classification,classification,cog,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Classification", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-dtm": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Terrain Model (DTM) using [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf) to output a collection of Cloud Optimized GeoTIFFs.\n\nThe Simple Morphological Filter (SMRF) classifies ground points based on the approach outlined in [Pingel2013](https://pdal.io/references.html#pingel2013).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dtm,cog,dtm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Terrain Model", "missionStartDate": "2012-01-01T00:00:00Z"}, "gap": {"abstract": "The [USGS GAP/LANDFIRE National Terrestrial Ecosystems data](https://www.sciencebase.gov/catalog/item/573cc51be4b0dae0d5e4b0c5), based on the [NatureServe Terrestrial Ecological Systems](https://www.natureserve.org/products/terrestrial-ecological-systems-united-states), are the foundation of the most detailed, consistent map of vegetation available for the United States. These data facilitate planning and management for biological diversity on a regional and national scale.\n\nThis dataset includes the [land cover](https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/land-cover) component of the GAP/LANDFIRE project.\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gap,land-cover,landfire,united-states,usgs", "license": "proprietary", "title": "USGS Gap Land Cover", "missionStartDate": "1999-01-01T00:00:00Z"}, "modis-17A2HGF-061": {"abstract": "The Version 6.1 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter (m) pixel size based on the radiation use efficiency concept that can be potentially used as inputs to data models to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product includes information about GPP and Net Photosynthesis (PSN). The PSN band values are the GPP less the Maintenance Respiration (MR). The data product also contains a PSN Quality Control (QC) layer. The quality layer contains quality information for both the GPP and the PSN. This product will be generated at the end of each year when the entire yearly 8-day 15A2H is available. Hence, the gap-filled A2HGF is the improved 17, which has cleaned the poor-quality inputs from 8-day Leaf Area Index and Fraction of Photosynthetically Active Radiation (FPAR/LAI) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a2hgf,modis,modis-17a2hgf-061,myd17a2hgf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Gross Primary Productivity 8-Day Gap-Filled", "missionStartDate": "2000-02-18T00:00:00Z"}, "planet-nicfi-visual": {"abstract": "*Note: Assets in this collection are only available to winners of the [GEO-Microsoft Planetary Computer RFP](https://www.earthobservations.org/geo_blog_obs.php?id=528). Others wishing to use the data can sign up and access it from Planet at [https://www.planet.com/nicfi/](https://www.planet.com/nicfi/) and email [planetarycomputer@microsoft.com](mailto:planetarycomputer@microsoft.com).*\n\nThrough Norway\u2019s International Climate & Forests Initiative (NICFI), users can access Planet\u2019s high-resolution, analysis-ready mosaics of the world\u2019s tropics in order to help reduce and reverse the loss of tropical forests, combat climate change, conserve biodiversity, and facilitate sustainable development.\n\nIn support of NICFI\u2019s mission, you can use this data for a number of projects including, but not limited to:\n\n* Advance scientific research about the world\u2019s tropical forests and the critical services they provide.\n* Implement and improve policies for sustainable forest management and land use in developing tropical forest countries and jurisdictions.\n* Increase transparency and accountability in the tropics.\n* Protect and improve the rights of indigenous peoples and local communities in tropical forest countries.\n* Innovate solutions towards reducing pressure on forests from global commodities and financial markets.\n* In short, the primary purpose of the NICFI Program is to support reducing and reversing the loss of tropical forests, contributing to combating climate change, conserving biodiversity, contributing to forest regrowth, restoration, and enhancement, and facilitating sustainable development, all of which must be Non-Commercial Use.\n\nTo learn how more about the NICFI program, streaming and downloading basemaps please read the [NICFI Data Program User Guide](https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf).\n\nThis collection contains both monthly and biannual mosaics. Biannual mosaics are available from December 2015 - August 2020. Monthly mosaics are available from September 2020. The STAC items include a `planet-nicfi:cadence` field indicating the type of mosaic.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "imagery,nicfi,planet,planet-nicfi-visual,satellite,tropics", "license": "proprietary", "title": "Planet-NICFI Basemaps (Visual)", "missionStartDate": "2015-12-01T00:00:00Z"}, "gbif": {"abstract": "The [Global Biodiversity Information Facility](https://www.gbif.org) (GBIF) is an international network and data infrastructure funded by the world's governments, providing global data that document the occurrence of species. GBIF currently integrates datasets documenting over 1.6 billion species occurrences.\n\nThe GBIF occurrence dataset combines data from a wide array of sources, including specimen-related data from natural history museums, observations from citizen science networks, and automated environmental surveys. While these data are constantly changing at [GBIF.org](https://www.gbif.org), periodic snapshots are taken and made available here. \n\nData are stored in [Parquet](https://parquet.apache.org/) format; the Parquet file schema is described below. Most field names correspond to [terms from the Darwin Core standard](https://dwc.tdwg.org/terms/), and have been interpreted by GBIF's systems to align taxonomy, location, dates, etc. Additional information may be retrieved using the [GBIF API](https://www.gbif.org/developer/summary).\n\nPlease refer to the GBIF [citation guidelines](https://www.gbif.org/citation-guidelines) for information about how to cite GBIF data in publications.. For analyses using the whole dataset, please use the following citation:\n\n> GBIF.org ([Date]) GBIF Occurrence Data [DOI of dataset]\n\nFor analyses where data are significantly filtered, please track the datasetKeys used and use a \"[derived dataset](https://www.gbif.org/citation-guidelines#derivedDatasets)\" record for citing the data.\n\nThe [GBIF data blog](https://data-blog.gbif.org/categories/gbif/) contains a number of articles that can help you analyze GBIF data.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biodiversity,gbif,species", "license": "proprietary", "title": "Global Biodiversity Information Facility (GBIF)", "missionStartDate": "2021-04-13T00:00:00Z"}, "modis-17A3HGF-061": {"abstract": "The Version 6.1 product provides information about annual Net Primary Production (NPP) at 500 meter (m) pixel resolution. Annual Moderate Resolution Imaging Spectroradiometer (MODIS) NPP is derived from the sum of all 8-day Net Photosynthesis (PSN) products (MOD17A2H) from the given year. The PSN value is the difference of the Gross Primary Productivity (GPP) and the Maintenance Respiration (MR). The product will be generated at the end of each year when the entire yearly 8-day 15A2H is available. Hence, the gap-filled product is the improved 17, which has cleaned the poor-quality inputs from 8-day Leaf Area Index and Fraction of Photosynthetically Active Radiation (LAI/FPAR) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a3hgf,modis,modis-17a3hgf-061,myd17a3hgf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Net Primary Production Yearly Gap-Filled", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-09A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) 09A1 Version 6.1 product provides an estimate of the surface spectral reflectance of MODIS Bands 1 through 7 corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven 500 meter (m) reflectance bands are two quality layers and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mod09a1,modis,modis-09a1-061,myd09a1,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Surface Reflectance 8-Day (500m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "alos-dem": {"abstract": "The \"ALOS World 3D-30m\" (AW3D30) dataset is a 30 meter resolution global digital surface model (DSM), developed by the Japan Aerospace Exploration Agency (JAXA). AWD30 was constructed from the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) on board Advanced Land Observing Satellite (ALOS), operated from 2006 to 2011.\n\nSee the [Product Description](https://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v3.2_product_e_e1.2.pdf) for more details.\n", "instrument": "prism", "platform": null, "platformSerialIdentifier": "alos", "processingLevel": null, "keywords": "alos,alos-dem,dem,dsm,elevation,jaxa,prism", "license": "proprietary", "title": "ALOS World 3D-30m", "missionStartDate": "2016-12-07T00:00:00Z"}, "alos-palsar-mosaic": {"abstract": "Global 25 m Resolution PALSAR-2/PALSAR Mosaic (MOS)", "instrument": "PALSAR,PALSAR-2", "platform": null, "platformSerialIdentifier": "ALOS,ALOS-2", "processingLevel": null, "keywords": "alos,alos-2,alos-palsar-mosaic,global,jaxa,palsar,palsar-2,remote-sensing", "license": "proprietary", "title": "ALOS PALSAR Annual Mosaic", "missionStartDate": "2015-01-01T00:00:00Z"}, "deltares-water-availability": {"abstract": "[Deltares](https://www.deltares.nl/en/) has produced a hydrological model approach to simulate historical daily reservoir variations for 3,236 locations across the globe for the period 1970-2020 using the distributed [wflow_sbm](https://deltares.github.io/Wflow.jl/stable/model_docs/model_configurations/) model. The model outputs long-term daily information on reservoir volume, inflow and outflow dynamics, as well as information on upstream hydrological forcing.\n\nThey hydrological model was forced with 5 different precipitation products. Two products (ERA5 and CHIRPS) are available at the global scale, while for Europe, USA and Australia a regional product was use (i.e. EOBS, NLDAS and BOM, respectively). Using these different precipitation products, it becomes possible to assess the impact of uncertainty in the model forcing. A different number of basins upstream of reservoirs are simulated, given the spatial coverage of each precipitation product.\n\nSee the complete [methodology documentation](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/pc-deltares-water-availability-documentation.pdf) for more information.\n\n## Dataset coverages\n\n| Name | Scale | Period | Number of basins |\n|--------|--------------------------|-----------|------------------|\n| ERA5 | Global | 1967-2020 | 3236 |\n| CHIRPS | Global (+/- 50 latitude) | 1981-2020 | 2951 |\n| EOBS | Europe/North Africa | 1979-2020 | 682 |\n| NLDAS | USA | 1979-2020 | 1090 |\n| BOM | Australia | 1979-2020 | 116 |\n\n## STAC Metadata\n\nThis STAC collection includes one STAC item per dataset. The item includes a `deltares:reservoir` property that can be used to query for the URL of a specific dataset.\n\n## Contact\n\nFor questions about this dataset, contact [`aiforearthdatasets@microsoft.com`](mailto:aiforearthdatasets@microsoft.com?subject=deltares-floods%20question).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "deltares,deltares-water-availability,precipitation,reservoir,water,water-availability", "license": "CDLA-Permissive-1.0", "title": "Deltares Global Water Availability", "missionStartDate": "1970-01-01T00:00:00Z"}, "modis-16A3GF-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16A3GF Version 6.1 Evapotranspiration/Latent Heat Flux (ET/LE) product is a year-end gap-filled yearly composite dataset produced at 500 meter (m) pixel resolution. The algorithm used for the MOD16 data product collection is based on the logic of the Penman-Monteith equation, which includes inputs of daily meteorological reanalysis data along with MODIS remotely sensed data products such as vegetation property dynamics, albedo, and land cover. The product will be generated at the end of each year when the entire yearly 8-day MOD15A2H/MYD15A2H is available. Hence, the gap-filled product is the improved 16, which has cleaned the poor-quality inputs from yearly Leaf Area Index and Fraction of Photosynthetically Active Radiation (LAI/FPAR) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year. Provided in the product are layers for composited ET, LE, Potential ET (PET), and Potential LE (PLE) along with a quality control layer. Two low resolution browse images, ET and LE, are also available for each granule. The pixel values for the two Evapotranspiration layers (ET and PET) are the sum for all days within the defined year, and the pixel values for the two Latent Heat layers (LE and PLE) are the average of all days within the defined year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod16a3gf,modis,modis-16a3gf-061,myd16a3gf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Net Evapotranspiration Yearly Gap-Filled", "missionStartDate": "2001-01-01T00:00:00Z"}, "modis-21A2-061": {"abstract": "A suite of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity (LST&E) products are available in Collection 6.1. The MOD21 Land Surface Temperatuer (LST) algorithm differs from the algorithm of the MOD11 LST products, in that the MOD21 algorithm is based on the ASTER Temperature/Emissivity Separation (TES) technique, whereas the MOD11 uses the split-window technique. The MOD21 TES algorithm uses a physics-based algorithm to dynamically retrieve both the LST and spectral emissivity simultaneously from the MODIS thermal infrared bands 29, 31, and 32. The TES algorithm is combined with an improved Water Vapor Scaling (WVS) atmospheric correction scheme to stabilize the retrieval during very warm and humid conditions. This dataset is an 8-day composite LST product at 1,000 meter spatial resolution that uses an algorithm based on a simple averaging method. The algorithm calculates the average from all the cloud free 21A1D and 21A1N daily acquisitions from the 8-day period. Unlike the 21A1 data sets where the daytime and nighttime acquisitions are separate products, the 21A2 contains both daytime and nighttime acquisitions as separate Science Dataset (SDS) layers within a single Hierarchical Data Format (HDF) file. The LST, Quality Control (QC), view zenith angle, and viewing time have separate day and night SDS layers, while the values for the MODIS emissivity bands 29, 31, and 32 are the average of both the nighttime and daytime acquisitions. Additional details regarding the method used to create this Level 3 (L3) product are available in the Algorithm Theoretical Basis Document (ATBD).", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod21a2,modis,modis-21a2-061,myd21a2,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/3-Band Emissivity 8-Day", "missionStartDate": "2000-02-16T00:00:00Z"}, "us-census": {"abstract": "The [2020 Census](https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-main.html) counted every person living in the United States and the five U.S. territories. It marked the 24th census in U.S. history and the first time that households were invited to respond to the census online.\n\nThe tables included on the Planetary Computer provide information on population and geographic boundaries at various levels of cartographic aggregation.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "administrative-boundaries,demographics,population,us-census,us-census-bureau", "license": "proprietary", "title": "US Census", "missionStartDate": "2021-08-01T00:00:00Z"}, "jrc-gsw": {"abstract": "Global surface water products from the European Commission Joint Research Centre, based on Landsat 5, 7, and 8 imagery. Layers in this collection describe the occurrence, change, and seasonality of surface water from 1984-2020. Complete documentation for each layer is available in the [Data Users Guide](https://storage.cloud.google.com/global-surface-water/downloads_ancillary/DataUsersGuidev2020.pdf).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,jrc-gsw,landsat,water", "license": "proprietary", "title": "JRC Global Surface Water", "missionStartDate": "1984-03-01T00:00:00Z"}, "deltares-floods": {"abstract": "[Deltares](https://www.deltares.nl/en/) has produced inundation maps of flood depth using a model that takes into account water level attenuation and is forced by sea level. At the coastline, the model is forced by extreme water levels containing surge and tide from GTSMip6. The water level at the coastline is extended landwards to all areas that are hydrodynamically connected to the coast following a \u2018bathtub\u2019 like approach and calculates the flood depth as the difference between the water level and the topography. Unlike a simple 'bathtub' model, this model attenuates the water level over land with a maximum attenuation factor of 0.5\u2009m\u2009km-1. The attenuation factor simulates the dampening of the flood levels due to the roughness over land.\n\nIn its current version, the model does not account for varying roughness over land and permanent water bodies such as rivers and lakes, and it does not account for the compound effects of waves, rainfall, and river discharge on coastal flooding. It also does not include the mitigating effect of coastal flood protection. Flood extents must thus be interpreted as the area that is potentially exposed to flooding without coastal protection.\n\nSee the complete [methodology documentation](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/11206409-003-ZWS-0003_v0.1-Planetary-Computer-Deltares-global-flood-docs.pdf) for more information.\n\n## Digital elevation models (DEMs)\n\nThis documentation will refer to three DEMs:\n\n* `NASADEM` is the SRTM-derived [NASADEM](https://planetarycomputer.microsoft.com/dataset/nasadem) product.\n* `MERITDEM` is the [Multi-Error-Removed Improved Terrain DEM](http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/), derived from SRTM and AW3D.\n* `LIDAR` is the [Global LiDAR Lowland DTM (GLL_DTM_v1)](https://data.mendeley.com/datasets/v5x4vpnzds/1).\n\n## Global datasets\n\nThis collection includes multiple global flood datasets derived from three different DEMs (`NASA`, `MERIT`, and `LIDAR`) and at different resolutions. Not all DEMs have all resolutions:\n\n* `NASADEM` and `MERITDEM` are available at `90m` and `1km` resolutions\n* `LIDAR` is available at `5km` resolution\n\n## Historic event datasets\n\nThis collection also includes historical storm event data files that follow similar DEM and resolution conventions. Not all storms events are available for each DEM and resolution combination, but generally follow the format of:\n\n`events/[DEM]_[resolution]-wm_final/[storm_name]_[event_year]_masked.nc`\n\nFor example, a flood map for the MERITDEM-derived 90m flood data for the \"Omar\" storm in 2008 is available at:\n\n\n\n## Contact\n\nFor questions about this dataset, contact [`aiforearthdatasets@microsoft.com`](mailto:aiforearthdatasets@microsoft.com?subject=deltares-floods%20question).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "deltares,deltares-floods,flood,global,sea-level-rise,water", "license": "CDLA-Permissive-1.0", "title": "Deltares Global Flood Maps", "missionStartDate": "2018-01-01T00:00:00Z"}, "modis-43A4-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 Version 6.1 Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset is produced daily using 16 days of Terra and Aqua MODIS data at 500 meter (m) resolution. The view angle effects are removed from the directional reflectances, resulting in a stable and consistent NBAR product. Data are temporally weighted to the ninth day which is reflected in the Julian date in the file name. Users are urged to use the band specific quality flags to isolate the highest quality full inversion results for their own science applications as described in the User Guide. The MCD43A4 provides NBAR and simplified mandatory quality layers for MODIS bands 1 through 7. Essential quality information provided in the corresponding MCD43A2 data file should be consulted when using this product.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mcd43a4,modis,modis-43a4-061,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Nadir BRDF-Adjusted Reflectance (NBAR) Daily", "missionStartDate": "2000-02-16T00:00:00Z"}, "modis-09Q1-061": {"abstract": "The 09Q1 Version 6.1 product provides an estimate of the surface spectral reflectance of Moderate Resolution Imaging Spectroradiometer (MODIS) Bands 1 and 2, corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Provided along with the 250 meter (m) surface reflectance bands are two quality layers. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mod09q1,modis,modis-09q1-061,myd09q1,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Surface Reflectance 8-Day (250m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-14A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies and Fire Daily Version 6.1 data are generated every eight days at 1 kilometer (km) spatial resolution as a Level 3 product. MOD14A1 contains eight consecutive days of fire data conveniently packaged into a single file. The Science Dataset (SDS) layers include the fire mask, pixel quality indicators, maximum fire radiative power (MaxFRP), and the position of the fire pixel within the scan. Each layer consists of daily per pixel information for each of the eight days of data acquisition.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,mod14a1,modis,modis-14a1-061,myd14a1,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Thermal Anomalies/Fire Daily", "missionStartDate": "2000-02-18T00:00:00Z"}, "hrea": {"abstract": "The [HREA](http://www-personal.umich.edu/~brianmin/HREA/index.html) project aims to provide open access to new indicators of electricity access and reliability across the world. Leveraging satellite imagery with computational methods, these high-resolution data provide new tools to track progress toward reliable and sustainable energy access across the world.\n\nThis dataset includes settlement-level measures of electricity access, reliability, and usage for 89 nations, derived from nightly VIIRS satellite imagery. Specifically, this dataset provides the following annual values at country-level granularity:\n\n1. **Access**: Predicted likelihood that a settlement is electrified, based on night-by-night comparisons of each settlement against matched uninhabited areas over a calendar year.\n\n2. **Reliability**: Proportion of nights a settlement is statistically brighter than matched uninhabited areas. Areas with more frequent power outages or service interruptions have lower rates.\n\n3. **Usage**: Higher levels of brightness indicate more robust usage of outdoor lighting, which is highly correlated with overall energy consumption.\n\n4. **Nighttime Lights**: Annual composites of VIIRS nighttime light output.\n\nFor more information and methodology, please visit the [HREA website](http://www-personal.umich.edu/~brianmin/HREA/index.html).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "electricity,hrea,viirs", "license": "CC-BY-4.0", "title": "HREA: High Resolution Electricity Access", "missionStartDate": "2012-12-31T00:00:00Z"}, "modis-13Q1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices Version 6.1 data are generated every 16 days at 250 meter (m) spatial resolution as a Level 3 product. The MOD13Q1 product provides two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI), which has improved sensitivity over high biomass regions. The algorithm chooses the best available pixel value from all the acquisitions from the 16 day period. The criteria used is low clouds, low view angle, and the highest NDVI/EVI value. Along with the vegetation layers and the two quality layers, the HDF file will have MODIS reflectance bands 1 (red), 2 (near-infrared), 3 (blue), and 7 (mid-infrared), as well as four observation layers.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod13q1,modis,modis-13q1-061,myd13q1,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Vegetation Indices 16-Day (250m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-14A2-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies and Fire 8-Day Version 6.1 data are generated at 1 kilometer (km) spatial resolution as a Level 3 product. The MOD14A2 gridded composite contains the maximum value of the individual fire pixel classes detected during the eight days of acquisition. The Science Dataset (SDS) layers include the fire mask and pixel quality indicators.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,mod14a2,modis,modis-14a2-061,myd14a2,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Thermal Anomalies/Fire 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "sentinel-2-l2a": {"abstract": "The [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) program provides global imagery in thirteen spectral bands at 10m-60m resolution and a revisit time of approximately five days. This dataset represents the global Sentinel-2 archive, from 2016 to the present, processed to L2A (bottom-of-atmosphere) using [Sen2Cor](https://step.esa.int/main/snap-supported-plugins/sen2cor/) and converted to [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "Sentinel-2A,Sentinel-2B", "processingLevel": null, "keywords": "copernicus,esa,global,imagery,msi,reflectance,satellite,sentinel,sentinel-2,sentinel-2-l2a,sentinel-2a,sentinel-2b", "license": "proprietary", "title": "Sentinel-2 Level-2A", "missionStartDate": "2015-06-27T10:25:31Z"}, "modis-15A2H-061": {"abstract": "The Version 6.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4, Combined Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) product is an 8-day composite dataset with 500 meter pixel size. The algorithm chooses the best pixel available from within the 8-day period. LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the green elements of a vegetation canopy.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mcd15a2h,mod15a2h,modis,modis-15a2h-061,myd15a2h,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Leaf Area Index/FPAR 8-Day", "missionStartDate": "2002-07-04T00:00:00Z"}, "modis-11A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity Daily Version 6.1 product provides daily per-pixel Land Surface Temperature and Emissivity (LST&E) with 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. The pixel temperature value is derived from the MOD11_L2 swath product. Above 30 degrees latitude, some pixels may have multiple observations where the criteria for clear-sky are met. When this occurs, the pixel value is a result of the average of all qualifying observations. Provided along with the daytime and nighttime surface temperature bands are associated quality control assessments, observation times, view zenith angles, and clear-sky coverages along with bands 31 and 32 emissivities from land cover types", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod11a1,modis,modis-11a1-061,myd11a1,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/Emissivity Daily", "missionStartDate": "2000-02-24T00:00:00Z"}, "modis-15A3H-061": {"abstract": "The MCD15A3H Version 6.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4, Combined Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) product is a 4-day composite data set with 500 meter pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA's Terra and Aqua satellites from within the 4-day period. LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the green elements of a vegetation canopy.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mcd15a3h,modis,modis-15a3h-061,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Leaf Area Index/FPAR 4-Day", "missionStartDate": "2002-07-04T00:00:00Z"}, "modis-10A2-061": {"abstract": "This global Level-3 (L3) data set provides the maximum snow cover extent observed over an eight-day period within 10degx10deg MODIS sinusoidal grid tiles. Tiles are generated by compositing 500 m observations from the 'MODIS Snow Cover Daily L3 Global 500m Grid' data set. A bit flag index is used to track the eight-day snow/no-snow chronology for each 500 m cell.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod10a2,modis,modis-10a2-061,myd10a2,nasa,satellite,snow,terra", "license": "proprietary", "title": "MODIS Snow Cover 8-day", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-10A1-061": {"abstract": "This global Level-3 (L3) data set provides a daily composite of snow cover and albedo derived from the 'MODIS Snow Cover 5-Min L2 Swath 500m' data set. Each data granule is a 10degx10deg tile projected to a 500 m sinusoidal grid.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod10a1,modis,modis-10a1-061,myd10a1,nasa,satellite,snow,terra", "license": "proprietary", "title": "MODIS Snow Cover Daily", "missionStartDate": "2000-02-24T00:00:00Z"}, "modis-13A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 16-Day Version 6.1 product provides Vegetation Index (VI) values at a per pixel basis at 500 meter (m) spatial resolution. There are two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI), which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI), which has improved sensitivity over high biomass regions. The algorithm for this product chooses the best available pixel value from all the acquisitions from the 16 day period. The criteria used is low clouds, low view angle, and the highest NDVI/EVI value. Provided along with the vegetation layers and two quality assurance (QA) layers are reflectance bands 1 (red), 2 (near-infrared), 3 (blue), and 7 (mid-infrared), as well as four observation layers.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod13a1,modis,modis-13a1-061,myd13a1,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Vegetation Indices 16-Day (500m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "daymet-daily-na": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-na,north-america,precipitation,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily North America", "missionStartDate": "1980-01-01T12:00:00Z"}, "nrcan-landcover": {"abstract": "Collection of Land Cover products for Canada as produced by Natural Resources Canada using Landsat satellite imagery. This collection of cartographic products offers classified Land Cover of Canada at a 30 metre scale, updated on a 5 year basis.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "canada,land-cover,landsat,north-america,nrcan-landcover,remote-sensing", "license": "OGL-Canada-2.0", "title": "Land Cover of Canada", "missionStartDate": "2015-01-01T00:00:00Z"}, "ecmwf-forecast": {"abstract": "The [ECMWF catalog of real-time products](https://www.ecmwf.int/en/forecasts/datasets/catalogue-ecmwf-real-time-products) offers real-time meterological and oceanographic productions from the ECMWF forecast system. Users should consult the [ECMWF Forecast User Guide](https://confluence.ecmwf.int/display/FUG/1+Introduction) for detailed information on each of the products.\n\n## Overview of products\n\nThe following diagram shows the publishing schedule of the various products.\n\n\n\nThe vertical axis shows the various products, defined below, which are grouped by combinations of `stream`, `forecast type`, and `reference time`. The horizontal axis shows *forecast times* in 3-hour intervals out from the reference time. A black square over a particular forecast time, or step, indicates that a forecast is made for that forecast time, for that particular `stream`, `forecast type`, `reference time` combination.\n\n* **stream** is the forecasting system that produced the data. The values are available in the `ecmwf:stream` summary of the STAC collection. They are:\n * `enfo`: [ensemble forecast](https://confluence.ecmwf.int/display/FUG/ENS+-+Ensemble+Forecasts), atmospheric fields\n * `mmsf`: [multi-model seasonal forecasts](https://confluence.ecmwf.int/display/FUG/Long-Range+%28Seasonal%29+Forecast) fields from the ECMWF model only.\n * `oper`: [high-resolution forecast](https://confluence.ecmwf.int/display/FUG/HRES+-+High-Resolution+Forecast), atmospheric fields \n * `scda`: short cut-off high-resolution forecast, atmospheric fields (also known as \"high-frequency products\")\n * `scwv`: short cut-off high-resolution forecast, ocean wave fields (also known as \"high-frequency products\") and\n * `waef`: [ensemble forecast](https://confluence.ecmwf.int/display/FUG/ENS+-+Ensemble+Forecasts), ocean wave fields,\n * `wave`: wave model\n* **type** is the forecast type. The values are available in the `ecmwf:type` summary of the STAC collection. They are:\n * `fc`: forecast\n * `ef`: ensemble forecast\n * `pf`: ensemble probabilities\n * `tf`: trajectory forecast for tropical cyclone tracks\n* **reference time** is the hours after midnight when the model was run. Each stream / type will produce assets for different forecast times (steps from the reference datetime) depending on the reference time.\n\nVisit the [ECMWF's User Guide](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time) for more details on each of the various products.\n\nAssets are available for the previous 30 days.\n\n## Asset overview\n\nThe data are provided as [GRIB2 files](https://confluence.ecmwf.int/display/CKB/What+are+GRIB+files+and+how+can+I+read+them).\nAdditionally, [index files](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time#ECMWFOpenDataRealTime-IndexFilesIndexfiles) are provided, which can be used to read subsets of the data from Azure Blob Storage.\n\nWithin each `stream`, `forecast type`, `reference time`, the structure of the data are mostly consistent. Each GRIB2 file will have the\nsame data variables, coordinates (aside from `time` as the *reference time* changes and `step` as the *forecast time* changes). The exception\nis the `enfo-ep` and `waef-ep` products, which have more `step`s in the 240-hour forecast than in the 360-hour forecast. \n\nSee the example notebook for more on how to access the data.\n\n## STAC metadata\n\nThe Planetary Computer provides a single STAC item per GRIB2 file. Each GRIB2 file is global in extent, so every item has the same\n`bbox` and `geometry`.\n\nA few custom properties are available on each STAC item, which can be used in searches to narrow down the data to items of interest:\n\n* `ecmwf:stream`: The forecasting system (see above for definitions). The full set of values is available in the Collection's summaries.\n* `ecmwf:type`: The forecast type (see above for definitions). The full set of values is available in the Collection's summaries.\n* `ecmwf:step`: The offset from the reference datetime, expressed as ``, for example `\"3h\"` means \"3 hours from the reference datetime\". \n* `ecmwf:reference_datetime`: The datetime when the model was run. This indicates when the forecast *was made*, rather than when it's valid for.\n* `ecmwf:forecast_datetime`: The datetime for which the forecast is valid. This is also set as the item's `datetime`.\n\nSee the example notebook for more on how to use the STAC metadata to query for particular data.\n\n## Attribution\n\nThe products listed and described on this page are available to the public and their use is governed by the [Creative Commons CC-4.0-BY license and the ECMWF Terms of Use](https://apps.ecmwf.int/datasets/licences/general/). This means that the data may be redistributed and used commercially, subject to appropriate attribution.\n\nThe following wording should be attached to the use of this ECMWF dataset: \n\n1. Copyright statement: Copyright \"\u00a9 [year] European Centre for Medium-Range Weather Forecasts (ECMWF)\".\n2. Source [www.ecmwf.int](http://www.ecmwf.int/)\n3. License Statement: This data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0). [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)\n4. Disclaimer: ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.\n5. Where applicable, an indication if the material has been modified and an indication of previous modifications.\n\nThe following wording shall be attached to services created with this ECMWF dataset:\n\n1. Copyright statement: Copyright \"This service is based on data and products of the European Centre for Medium-Range Weather Forecasts (ECMWF)\".\n2. Source www.ecmwf.int\n3. License Statement: This ECMWF data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0). [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)\n4. Disclaimer: ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.\n5. Where applicable, an indication if the material has been modified and an indication of previous modifications\n\n## More information\n\nFor more, see the [ECMWF's User Guide](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time) and [example notebooks](https://github.com/ecmwf/notebook-examples/tree/master/opencharts).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "ecmwf,ecmwf-forecast,forecast,weather", "license": "CC-BY-4.0", "title": "ECMWF Open Data (real-time)", "missionStartDate": null}, "noaa-mrms-qpe-24h-pass2": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **24-Hour Pass 2** sub-product, i.e., 24-hour cumulative precipitation accumulation with a 2-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-24h-pass2,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 24-Hour Pass 2", "missionStartDate": "2022-07-21T20:00:00Z"}, "sentinel-1-grd": {"abstract": "The [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) mission is a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging. The Level-1 Ground Range Detected (GRD) products in this Collection consist of focused SAR data that has been detected, multi-looked and projected to ground range using the Earth ellipsoid model WGS84. The ellipsoid projection of the GRD products is corrected using the terrain height specified in the product general annotation. The terrain height used varies in azimuth but is constant in range (but can be different for each IW/EW sub-swath).\n\nGround range coordinates are the slant range coordinates projected onto the ellipsoid of the Earth. Pixel values represent detected amplitude. Phase information is lost. The resulting product has approximately square resolution pixels and square pixel spacing with reduced speckle at a cost of reduced spatial resolution.\n\nFor the IW and EW GRD products, multi-looking is performed on each burst individually. All bursts in all sub-swaths are then seamlessly merged to form a single, contiguous, ground range, detected image per polarization.\n\nFor more information see the [ESA documentation](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1)\n\n### Terrain Correction\n\nUsers might want to geometrically or radiometrically terrain correct the Sentinel-1 GRD data from this collection. The [Sentinel-1-RTC Collection](https://planetarycomputer.microsoft.com/dataset/sentinel-1-rtc) collection is a global radiometrically terrain corrected dataset derived from Sentinel-1 GRD. Additionally, users can terrain-correct on the fly using [any DEM available on the Planetary Computer](https://planetarycomputer.microsoft.com/catalog?tags=DEM). See [Customizable radiometric terrain correction](https://planetarycomputer.microsoft.com/docs/tutorials/customizable-rtc-sentinel1/) for more.", "instrument": null, "platform": "Sentinel-1", "platformSerialIdentifier": "SENTINEL-1A,SENTINEL-1B", "processingLevel": null, "keywords": "c-band,copernicus,esa,grd,sar,sentinel,sentinel-1,sentinel-1-grd,sentinel-1a,sentinel-1b", "license": "proprietary", "title": "Sentinel 1 Level-1 Ground Range Detected (GRD)", "missionStartDate": "2014-10-10T00:28:21Z"}, "nasadem": {"abstract": "[NASADEM](https://earthdata.nasa.gov/esds/competitive-programs/measures/nasadem) provides global topographic data at 1 arc-second (~30m) horizontal resolution, derived primarily from data captured via the [Shuttle Radar Topography Mission](https://www2.jpl.nasa.gov/srtm/) (SRTM).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "dem,elevation,jpl,nasa,nasadem,nga,srtm,usgs", "license": "proprietary", "title": "NASADEM HGT v001", "missionStartDate": "2000-02-20T00:00:00Z"}, "io-lulc": {"abstract": "__Note__: _A new version of this item is available for your use. This mature version of the map remains available for use in existing applications. This item will be retired in December 2024. There is 2020 data available in the newer [9-class dataset](https://planetarycomputer.microsoft.com/dataset/io-lulc-9-class)._\n\nGlobal estimates of 10-class land use/land cover (LULC) for 2020, derived from ESA Sentinel-2 imagery at 10m resolution. This dataset was generated by [Impact Observatory](http://impactobservatory.com/), who used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. The global map was produced by applying this model to the relevant yearly Sentinel-2 scenes on the Planetary Computer.\n\nThis dataset is also available on the [ArcGIS Living Atlas of the World](https://livingatlas.arcgis.com/landcover/).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,io-lulc,land-cover,land-use,sentinel", "license": "CC-BY-4.0", "title": "Esri 10-Meter Land Cover (10-class)", "missionStartDate": "2017-01-01T00:00:00Z"}, "landsat-c2-l1": {"abstract": "Landsat Collection 2 Level-1 data, consisting of quantized and calibrated scaled Digital Numbers (DN) representing the multispectral image data. These [Level-1](https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data) data can be [rescaled](https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product) to top of atmosphere (TOA) reflectance and/or radiance. Thermal band data can be rescaled to TOA brightness temperature.\n\nThis dataset represents the global archive of Level-1 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2) acquired by the [Multispectral Scanner System](https://landsat.gsfc.nasa.gov/multispectral-scanner-system/) onboard Landsat 1 through Landsat 5 from July 7, 1972 to January 7, 2013. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "mss", "platform": null, "platformSerialIdentifier": "landsat-1,landsat-2,landsat-3,landsat-4,landsat-5", "processingLevel": null, "keywords": "global,imagery,landsat,landsat-1,landsat-2,landsat-3,landsat-4,landsat-5,landsat-c2-l1,mss,nasa,satellite,usgs", "license": "proprietary", "title": "Landsat Collection 2 Level-1", "missionStartDate": "1972-07-25T00:00:00Z"}, "drcog-lulc": {"abstract": "The [Denver Regional Council of Governments (DRCOG) Land Use/Land Cover (LULC)](https://drcog.org/services-and-resources/data-maps-and-modeling/regional-land-use-land-cover-project) datasets are developed in partnership with the [Babbit Center for Land and Water Policy](https://www.lincolninst.edu/our-work/babbitt-center-land-water-policy) and the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/)'s Conservation Innovation Center (CIC). DRCOG LULC includes 2018 data at 3.28ft (1m) resolution covering 1,000 square miles and 2020 data at 1ft resolution covering 6,000 square miles of the Denver, Colorado region. The classification data is derived from the USDA's 1m National Agricultural Imagery Program (NAIP) aerial imagery and leaf-off aerial ortho-imagery captured as part of the [Denver Regional Aerial Photography Project](https://drcog.org/services-and-resources/data-maps-and-modeling/denver-regional-aerial-photography-project) (6in resolution everywhere except the mountainous regions to the west, which are 1ft resolution).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "drcog-lulc,land-cover,land-use,naip,usda", "license": "proprietary", "title": "Denver Regional Council of Governments Land Use Land Cover", "missionStartDate": "2018-01-01T00:00:00Z"}, "chesapeake-lc-7": {"abstract": "A high-resolution 1-meter [land cover data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) in raster format for the entire Chesapeake Bay watershed based on 2013-2014 imagery from the National Agriculture Imagery Program (NAIP). The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions, that leads and directs Chesapeake Bay restoration efforts. \n\nThe dataset is composed of a uniform set of 7 land cover classes. Additional information is available in a [User Guide](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/06/Chesapeake_Conservancy_LandCover101Guide_June2020.pdf). Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lc-7,land-cover", "license": "proprietary", "title": "Chesapeake Land Cover (7-class)", "missionStartDate": "2013-01-01T00:00:00Z"}, "chesapeake-lc-13": {"abstract": "A high-resolution 1-meter [land cover data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) in raster format for the entire Chesapeake Bay watershed based on 2013-2014 imagery from the National Agriculture Imagery Program (NAIP). The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions, that leads and directs Chesapeake Bay restoration efforts. \n\nThe dataset is composed of 13 land cover classes, although not all classes are used in all areas. Additional information is available in a [User Guide](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/06/Chesapeake_Conservancy_LandCover101Guide_June2020.pdf) and [Class Description](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/03/LC_Class_Descriptions.pdf) document. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lc-13,land-cover", "license": "proprietary", "title": "Chesapeake Land Cover (13-class)", "missionStartDate": "2013-01-01T00:00:00Z"}, "chesapeake-lu": {"abstract": "A high-resolution 1-meter [land use data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-use-data-project/) in raster format for the entire Chesapeake Bay watershed. The dataset was created by modifying the 2013-2014 high-resolution [land cover dataset](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) using 13 ancillary datasets including data on zoning, land use, parcel boundaries, landfills, floodplains, and wetlands. The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions that leads and directs Chesapeake Bay restoration efforts.\n\nThe dataset is composed of 17 land use classes in Virginia and 16 classes in all other jurisdictions. Additional information is available in a land use [Class Description](https://www.chesapeakeconservancy.org/wp-content/uploads/2018/11/2013-Phase-6-Mapped-Land-Use-Definitions-Updated-PC-11302018.pdf) document. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lu,land-use", "license": "proprietary", "title": "Chesapeake Land Use", "missionStartDate": "2013-01-01T00:00:00Z"}, "noaa-mrms-qpe-1h-pass1": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **1-Hour Pass 1** sub-product, i.e., 1-hour cumulative precipitation accumulation with a 1-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-1h-pass1,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 1-Hour Pass 1", "missionStartDate": "2022-07-21T20:00:00Z"}, "noaa-mrms-qpe-1h-pass2": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **1-Hour Pass 2** sub-product, i.e., 1-hour cumulative precipitation accumulation with a 2-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-1h-pass2,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 1-Hour Pass 2", "missionStartDate": "2022-07-21T20:00:00Z"}, "noaa-nclimgrid-monthly": {"abstract": "The [NOAA U.S. Climate Gridded Dataset (NClimGrid)](https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00332) consists of four climate variables derived from the [Global Historical Climatology Network daily (GHCNd)](https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily) dataset: maximum temperature, minimum temperature, average temperature, and precipitation. The data is provided in 1/24 degree lat/lon (nominal 5x5 kilometer) grids for the Continental United States (CONUS). \n\nNClimGrid data is available in monthly and daily temporal intervals, with the daily data further differentiated as \"prelim\" (preliminary) or \"scaled\". Preliminary daily data is available within approximately three days of collection. Once a calendar month of preliminary daily data has been collected, it is scaled to match the corresponding monthly value. Monthly data is available from 1895 to the present. Daily preliminary and daily scaled data is available from 1951 to the present. \n\nThis Collection contains **Monthly** data. See the journal publication [\"Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions\"](https://journals.ametsoc.org/view/journals/apme/53/5/jamc-d-13-0248.1.xml) for more information about monthly gridded data.\n\nUsers of all NClimGrid data product should be aware that [NOAA advertises](https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00332) that:\n>\"On an annual basis, approximately one year of 'final' NClimGrid data is submitted to replace the initially supplied 'preliminary' data for the same time period. Users should be sure to ascertain which level of data is required for their research.\"\n\nThe source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\n*Note*: The Planetary Computer currently has STAC metadata for just the monthly collection. We'll have STAC metadata for daily data in our next release. In the meantime, you can access the daily NetCDF data directly from Blob Storage using the storage container at `https://nclimgridwesteurope.blob.core.windows.net/nclimgrid`. See https://planetarycomputer.microsoft.com/docs/concepts/data-catalog/#access-patterns for more.*\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,nclimgrid,noaa,noaa-nclimgrid-monthly,precipitation,temperature,united-states", "license": "proprietary", "title": "Monthly NOAA U.S. Climate Gridded Dataset (NClimGrid)", "missionStartDate": "1895-01-01T00:00:00Z"}, "goes-glm": {"abstract": "The [Geostationary Lightning Mapper (GLM)](https://www.goes-r.gov/spacesegment/glm.html) is a single-channel, near-infrared optical transient detector that can detect the momentary changes in an optical scene, indicating the presence of lightning. GLM measures total lightning (in-cloud, cloud-to-cloud and cloud-to-ground) activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. GLM collects information such as the frequency, location and extent of lightning discharges to identify intensifying thunderstorms and tropical cyclones. Trends in total lightning available from the GLM provide critical information to forecasters, allowing them to focus on developing severe storms much earlier and before these storms produce damaging winds, hail or even tornadoes.\n\nThe GLM data product consists of a hierarchy of earth-located lightning radiant energy measures including events, groups, and flashes:\n\n- Lightning events are detected by the instrument.\n- Lightning groups are a collection of one or more lightning events that satisfy temporal and spatial coincidence thresholds.\n- Similarly, lightning flashes are a collection of one or more lightning groups that satisfy temporal and spatial coincidence thresholds.\n\nThe product includes the relationship among lightning events, groups, and flashes, and the area coverage of lightning groups and flashes. The product also includes processing and data quality metadata, and satellite state and location information. \n\nThis Collection contains GLM L2 data in tabular ([GeoParquet](https://github.com/opengeospatial/geoparquet)) format and the original source NetCDF format. The NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).", "instrument": "FM1,FM2", "platform": "GOES", "platformSerialIdentifier": "GOES-16,GOES-17", "processingLevel": ["L2"], "keywords": "fm1,fm2,goes,goes-16,goes-17,goes-glm,l2,lightning,nasa,noaa,satellite,weather", "license": "proprietary", "title": "GOES-R Lightning Detection", "missionStartDate": "2018-02-13T16:10:00Z"}, "usda-cdl": {"abstract": "The Cropland Data Layer (CDL) is a product of the USDA National Agricultural Statistics Service (NASS) with the mission \"to provide timely, accurate and useful statistics in service to U.S. agriculture\" (Johnson and Mueller, 2010, p. 1204). The CDL is a crop-specific land cover classification product of more than 100 crop categories grown in the United States. CDLs are derived using a supervised land cover classification of satellite imagery. The supervised classification relies on first manually identifying pixels within certain images, often called training sites, which represent the same crop or land cover type. Using these training sites, a spectral signature is developed for each crop type that is then used by the analysis software to identify all other pixels in the satellite image representing the same crop. Using this method, a new CDL is compiled annually and released to the public a few months after the end of the growing season.\n\nThis collection includes Cropland, Confidence, Cultivated, and Frequency products.\n\n- Cropland: Crop-specific land cover data created annually. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat.\n- Confidence: The predicted confidence associated with an output pixel. A value of zero indicates low confidence, while a value of 100 indicates high confidence.\n- Cultivated: cultivated and non-cultivated land cover for CONUS based on land cover information derived from the 2017 through 2021 Cropland products.\n- Frequency: crop specific planting frequency based on land cover information derived from the 2008 through 2021 Cropland products.\n\nFor more, visit the [Cropland Data Layer homepage](https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "agriculture,land-cover,land-use,united-states,usda,usda-cdl", "license": "proprietary", "title": "USDA Cropland Data Layers (CDLs)", "missionStartDate": "2008-01-01T00:00:00Z"}, "eclipse": {"abstract": "The [Project Eclipse](https://www.microsoft.com/en-us/research/project/project-eclipse/) Network is a low-cost air quality sensing network for cities and a research project led by the [Urban Innovation Group]( https://www.microsoft.com/en-us/research/urban-innovation-research/) at Microsoft Research.\n\nProject Eclipse currently includes over 100 locations in Chicago, Illinois, USA.\n\nThis network was deployed starting in July, 2021, through a collaboration with the City of Chicago, the Array of Things Project, JCDecaux Chicago, and the Environmental Law and Policy Center as well as local environmental justice organizations in the city. [This talk]( https://www.microsoft.com/en-us/research/video/technology-demo-project-eclipse-hyperlocal-air-quality-monitoring-for-cities/) documents the network design and data calibration strategy.\n\n## Storage resources\n\nData are stored in [Parquet](https://parquet.apache.org/) files in Azure Blob Storage in the West Europe Azure region, in the following blob container:\n\n`https://ai4edataeuwest.blob.core.windows.net/eclipse`\n\nWithin that container, the periodic occurrence snapshots are stored in `Chicago/YYYY-MM-DD`, where `YYYY-MM-DD` corresponds to the date of the snapshot.\nEach snapshot contains a sensor readings from the next 7-days in Parquet format starting with date on the folder name YYYY-MM-DD.\nTherefore, the data files for the first snapshot are at\n\n`https://ai4edataeuwest.blob.core.windows.net/eclipse/chicago/2022-01-01/data_*.parquet\n\nThe Parquet file schema is as described below. \n\n## Additional Documentation\n\nFor details on Calibration of Pm2.5, O3 and NO2, please see [this PDF](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/Calibration_Doc_v1.1.pdf).\n\n## License and attribution\nPlease cite: Daepp, Cabral, Ranganathan et al. (2022) [Eclipse: An End-to-End Platform for Low-Cost, Hyperlocal Environmental Sensing in Cities. ACM/IEEE Information Processing in Sensor Networks. Milan, Italy.](https://www.microsoft.com/en-us/research/uploads/prod/2022/05/ACM_2022-IPSN_FINAL_Eclipse.pdf)\n\n## Contact\n\nFor questions about this dataset, contact [`msrurbanops@microsoft.com`](mailto:msrurbanops@microsoft.com?subject=eclipse%20question) \n\n\n## Learn more\n\nThe [Eclipse Project](https://www.microsoft.com/en-us/research/urban-innovation-research/) contains an overview of the Project Eclipse at Microsoft Research.\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "air-pollution,eclipse,pm25", "license": "proprietary", "title": "Urban Innovation Eclipse Sensor Data", "missionStartDate": "2021-01-01T00:00:00Z"}, "esa-cci-lc": {"abstract": "The ESA Climate Change Initiative (CCI) [Land Cover dataset](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview) provides consistent global annual land cover maps at 300m spatial resolution from 1992 to 2020. The land cover classes are defined using the United Nations Food and Agriculture Organization's (UN FAO) [Land Cover Classification System](https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/) (LCCS). In addition to the land cover maps, four quality flags are produced to document the reliability of the classification and change detection. \n\nThe data in this Collection have been converted from the [original NetCDF data](https://planetarycomputer.microsoft.com/dataset/esa-cci-lc-netcdf) to a set of tiled [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cci,esa,esa-cci-lc,global,land-cover", "license": "proprietary", "title": "ESA Climate Change Initiative Land Cover Maps (Cloud Optimized GeoTIFF)", "missionStartDate": "1992-01-01T00:00:00Z"}, "esa-cci-lc-netcdf": {"abstract": "The ESA Climate Change Initiative (CCI) [Land Cover dataset](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview) provides consistent global annual land cover maps at 300m spatial resolution from 1992 to 2020. The land cover classes are defined using the United Nations Food and Agriculture Organization's (UN FAO) [Land Cover Classification System](https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/) (LCCS). In addition to the land cover maps, four quality flags are produced to document the reliability of the classification and change detection. \n\nThe data in this Collection are the original NetCDF files accessed from the [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/#!/home). We recommend users use the [`esa-cci-lc` Collection](planetarycomputer.microsoft.com/dataset/esa-cci-lc), which provides the data as Cloud Optimized GeoTIFFs.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cci,esa,esa-cci-lc-netcdf,global,land-cover", "license": "proprietary", "title": "ESA Climate Change Initiative Land Cover Maps (NetCDF)", "missionStartDate": "1992-01-01T00:00:00Z"}, "fws-nwi": {"abstract": "The Wetlands Data Layer is the product of over 45 years of work by the National Wetlands Inventory (NWI) and its collaborators and currently contains more than 35 million wetland and deepwater features. This dataset, covering the conterminous United States, Hawaii, Puerto Rico, the Virgin Islands, Guam, the major Northern Mariana Islands and Alaska, continues to grow at a rate of 50 to 100 million acres annually as data are updated.\n\n**NOTE:** Due to the variation in use and analysis of this data by the end user, each state's wetlands data extends beyond the state boundary. Each state includes wetlands data that intersect the 1:24,000 quadrangles that contain part of that state (1:2,000,000 source data). This allows the user to clip the data to their specific analysis datasets. Beware that two adjacent states will contain some of the same data along their borders.\n\nFor more information, visit the National Wetlands Inventory [homepage](https://www.fws.gov/program/national-wetlands-inventory).\n\n## STAC Metadata\n\nIn addition to the `zip` asset in every STAC item, each item has its own assets unique to its wetlands. In general, each item will have several assets, each linking to a [geoparquet](https://github.com/opengeospatial/geoparquet) asset with data for the entire region or a sub-region within that state. Use the `cloud-optimized` [role](https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#asset-roles) to select just the geoparquet assets. See the Example Notebook for more.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "fws-nwi,united-states,usfws,wetlands", "license": "proprietary", "title": "FWS National Wetlands Inventory", "missionStartDate": "2022-10-01T00:00:00Z"}, "usgs-lcmap-conus-v13": {"abstract": "The [Land Change Monitoring, Assessment, and Projection](https://www.usgs.gov/special-topics/lcmap) (LCMAP) product provides land cover mapping and change monitoring from the U.S. Geological Survey's [Earth Resources Observation and Science](https://www.usgs.gov/centers/eros) (EROS) Center. LCMAP's Science Products are developed by applying time-series modeling on a per-pixel basis to [Landsat Analysis Ready Data](https://www.usgs.gov/landsat-missions/landsat-us-analysis-ready-data) (ARD) using an implementation of the [Continuous Change Detection and Classification](https://doi.org/10.1016/j.rse.2014.01.011) (CCDC) algorithm. All available clear (non-cloudy) U.S. Landsat ARD observations are fit to a harmonic model to predict future Landsat-like surface reflectance. Where Landsat surface reflectance observations differ significantly from those predictions, a change is identified. Attributes of the resulting model sequences (e.g., start/end dates, residuals, model coefficients) are then used to produce a set of land surface change products and as inputs to the subsequent classification to thematic land cover. \n\nThis [STAC](https://stacspec.org/en) Collection contains [LCMAP CONUS Collection 1.3](https://www.usgs.gov/special-topics/lcmap/collection-13-conus-science-products), which was released in August 2022 for years 1985-2021. The data are tiled according to the Landsat ARD tile grid and consist of [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs) and corresponding metadata files. Note that the provided COGs differ slightly from those in the USGS source data. They have been reprocessed to add overviews, \"nodata\" values where appropriate, and an updated projection definition.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "conus,land-cover,land-cover-change,lcmap,usgs,usgs-lcmap-conus-v13", "license": "proprietary", "title": "USGS LCMAP CONUS Collection 1.3", "missionStartDate": "1985-01-01T00:00:00Z"}, "usgs-lcmap-hawaii-v10": {"abstract": "The [Land Change Monitoring, Assessment, and Projection](https://www.usgs.gov/special-topics/lcmap) (LCMAP) product provides land cover mapping and change monitoring from the U.S. Geological Survey's [Earth Resources Observation and Science](https://www.usgs.gov/centers/eros) (EROS) Center. LCMAP's Science Products are developed by applying time-series modeling on a per-pixel basis to [Landsat Analysis Ready Data](https://www.usgs.gov/landsat-missions/landsat-us-analysis-ready-data) (ARD) using an implementation of the [Continuous Change Detection and Classification](https://doi.org/10.1016/j.rse.2014.01.011) (CCDC) algorithm. All available clear (non-cloudy) U.S. Landsat ARD observations are fit to a harmonic model to predict future Landsat-like surface reflectance. Where Landsat surface reflectance observations differ significantly from those predictions, a change is identified. Attributes of the resulting model sequences (e.g., start/end dates, residuals, model coefficients) are then used to produce a set of land surface change products and as inputs to the subsequent classification to thematic land cover. \n\nThis [STAC](https://stacspec.org/en) Collection contains [LCMAP Hawaii Collection 1.0](https://www.usgs.gov/special-topics/lcmap/collection-1-hawaii-science-products), which was released in January 2022 for years 2000-2020. The data are tiled according to the Landsat ARD tile grid and consist of [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs) and corresponding metadata files. Note that the provided COGs differ slightly from those in the USGS source data. They have been reprocessed to add overviews, \"nodata\" values where appropriate, and an updated projection definition.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "hawaii,land-cover,land-cover-change,lcmap,usgs,usgs-lcmap-hawaii-v10", "license": "proprietary", "title": "USGS LCMAP Hawaii Collection 1.0", "missionStartDate": "2000-01-01T00:00:00Z"}, "noaa-climate-normals-tabular": {"abstract": "The [NOAA United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals) provide information about typical climate conditions for thousands of weather station locations across the United States. Normals act both as a ruler to compare current weather and as a predictor of conditions in the near future. The official normals are calculated for a uniform 30 year period, and consist of annual/seasonal, monthly, daily, and hourly averages and statistics of temperature, precipitation, and other climatological variables for each weather station. \n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThis Collection contains tabular weather variable data at weather station locations in GeoParquet format, converted from the source CSV files. The source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\nData are provided for annual/seasonal, monthly, daily, and hourly frequencies for the following time periods:\n\n- Legacy 30-year normals (1981\u20132010)\n- Supplemental 15-year normals (2006\u20132020)\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-tabular,surface-observations,weather", "license": "proprietary", "title": "NOAA US Tabular Climate Normals", "missionStartDate": "1981-01-01T00:00:00Z"}, "noaa-climate-normals-netcdf": {"abstract": "The [NOAA Gridded United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals#tab-1027) provide a continuous grid of temperature and precipitation data across the contiguous United States (CONUS). The grids are derived from NOAA's [NClimGrid dataset](https://planetarycomputer.microsoft.com/dataset/group/noaa-nclimgrid), and resolutions (nominal 5x5 kilometer) and spatial extents (CONUS) therefore match that of NClimGrid. Monthly, seasonal, and annual gridded normals are computed from simple averages of the NClimGrid data and are provided for three time-periods: 1901\u20132020, 1991\u20132020, and 2006\u20132020. Daily gridded normals are smoothed for a smooth transition from one day to another and are provided for two time-periods: 1991\u20132020, and 2006\u20132020.\n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThe data in this Collection are the original NetCDF files provided by NOAA's National Centers for Environmental Information. This Collection contains gridded data for the following frequencies and time periods:\n\n- Annual, seasonal, and monthly normals\n - 100-year (1901\u20132000)\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n- Daily normals\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n\nFor most use-cases, we recommend using the [`noaa-climate-normals-gridded`](https://planetarycomputer.microsoft.com/dataset/noaa-climate-normals-gridded) collection, which contains the same data in Cloud Optimized GeoTIFF format. The NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-netcdf,surface-observations,weather", "license": "proprietary", "title": "NOAA US Gridded Climate Normals (NetCDF)", "missionStartDate": "1901-01-01T00:00:00Z"}, "noaa-climate-normals-gridded": {"abstract": "The [NOAA Gridded United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals#tab-1027) provide a continuous grid of temperature and precipitation data across the contiguous United States (CONUS). The grids are derived from NOAA's [NClimGrid dataset](https://planetarycomputer.microsoft.com/dataset/group/noaa-nclimgrid), and resolutions (nominal 5x5 kilometer) and spatial extents (CONUS) therefore match that of NClimGrid. Monthly, seasonal, and annual gridded normals are computed from simple averages of the NClimGrid data and are provided for three time-periods: 1901\u20132020, 1991\u20132020, and 2006\u20132020. Daily gridded normals are smoothed for a smooth transition from one day to another and are provided for two time-periods: 1991\u20132020, and 2006\u20132020.\n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThis Collection contains gridded data for the following frequencies and time periods:\n\n- Annual, seasonal, and monthly normals\n - 100-year (1901\u20132000)\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n- Daily normals\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n\nThe data in this Collection have been converted from the original NetCDF format to Cloud Optimized GeoTIFFs (COGs). The source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\n## STAC Metadata\n\nThe STAC items in this collection contain several custom fields that can be used to further filter the data.\n\n* `noaa_climate_normals:period`: Climate normal time period. This can be \"1901-2000\", \"1991-2020\", or \"2006-2020\".\n* `noaa_climate_normals:frequency`: Climate normal temporal interval (frequency). This can be \"daily\", \"monthly\", \"seasonal\" , or \"annual\"\n* `noaa_climate_normals:time_index`: Time step index, e.g., month of year (1-12).\n\nThe `description` field of the assets varies by frequency. Using `prcp_norm` as an example, the descriptions are\n\n* annual: \"Annual precipitation normals from monthly precipitation normal values\"\n* seasonal: \"Seasonal precipitation normals (WSSF) from monthly normals\"\n* monthly: \"Monthly precipitation normals from monthly precipitation values\"\n* daily: \"Precipitation normals from daily averages\"\n\nCheck the assets on individual items for the appropriate description.\n\nThe STAC keys for most assets consist of two abbreviations. A \"variable\":\n\n\n| Abbreviation | Description |\n| ------------ | ---------------------------------------- |\n| prcp | Precipitation over the time period |\n| tavg | Mean temperature over the time period |\n| tmax | Maximum temperature over the time period |\n| tmin | Minimum temperature over the time period |\n\nAnd an \"aggregation\":\n\n| Abbreviation | Description |\n| ------------ | ------------------------------------------------------------------------------ |\n| max | Maximum of the variable over the time period |\n| min | Minimum of the variable over the time period |\n| std | Standard deviation of the value over the time period |\n| flag | An count of the number of inputs (months, years, etc.) to calculate the normal |\n| norm | The normal for the variable over the time period |\n\nSo, for example, `prcp_max` for monthly data is the \"Maximum values of all input monthly precipitation normal values\".\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-gridded,surface-observations,weather", "license": "proprietary", "title": "NOAA US Gridded Climate Normals (Cloud-Optimized GeoTIFF)", "missionStartDate": "1901-01-01T00:00:00Z"}, "aster-l1t": {"abstract": "The [ASTER](https://terra.nasa.gov/about/terra-instruments/aster) instrument, launched on-board NASA's [Terra](https://terra.nasa.gov/) satellite in 1999, provides multispectral images of the Earth at 15m-90m resolution. ASTER images provide information about land surface temperature, color, elevation, and mineral composition.\n\nThis dataset represents ASTER [L1T](https://lpdaac.usgs.gov/products/ast_l1tv003/) data from 2000-2006. L1T images have been terrain-corrected and rotated to a north-up UTM projection. Images are in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "aster", "platform": null, "platformSerialIdentifier": "terra", "processingLevel": null, "keywords": "aster,aster-l1t,global,nasa,satellite,terra,usgs", "license": "proprietary", "title": "ASTER L1T", "missionStartDate": "2000-03-04T12:00:00Z"}, "cil-gdpcir-cc-by-sa": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc-by-sa#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc-by-sa#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 179MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | ---------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40] |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40] |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40] |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc-by-sa,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC-BY-SA-4.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC-BY-SA-4.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "cil-gdpcir-cc-by": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc-by#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc-by#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 180MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | ---------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40] |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40] |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40] |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc-by,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC-BY-4.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC-BY-4.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "cil-gdpcir-cc0": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc0#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc0#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 180MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | -------------------------------------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40 |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40 |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40 |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40 |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40 |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40 |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40 |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40 |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc0,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC0-1.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC0-1.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "ms-buildings": {"abstract": "Bing Maps is releasing open building footprints around the world. We have detected over 999 million buildings from Bing Maps imagery between 2014 and 2021 including Maxar and Airbus imagery. The data is freely available for download and use under ODbL. This dataset complements our other releases.\n\nFor more information, see the [GlobalMLBuildingFootprints](https://github.com/microsoft/GlobalMLBuildingFootprints/) repository on GitHub.\n\n## Building footprint creation\n\nThe building extraction is done in two stages:\n\n1. Semantic Segmentation \u2013 Recognizing building pixels on an aerial image using deep neural networks (DNNs)\n2. Polygonization \u2013 Converting building pixel detections into polygons\n\n**Stage 1: Semantic Segmentation**\n\n![Semantic segmentation](https://raw.githubusercontent.com/microsoft/GlobalMLBuildingFootprints/main/images/segmentation.jpg)\n\n**Stage 2: Polygonization**\n\n![Polygonization](https://github.com/microsoft/GlobalMLBuildingFootprints/raw/main/images/polygonization.jpg)\n\n## STAC metadata\n\nThis STAC collection has one STAC item per region. The `msbuildings:region` property can be used to filter items to a specific region.\n\n## Data assets\n\nThe building footprints are provided as a set of [geoparquet](https://github.com/opengeospatial/geoparquet) datasets. The data are partitioned at multiple levels. There is one [Parquet dataset](https://arrow.apache.org/docs/python/parquet.html#partitioned-datasets-multiple-files) per region. Regions are partitioned into many parquet files so that each file fits comfortably in memory.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "bing-maps,buildings,footprint,geoparquet,microsoft,ms-buildings", "license": "ODbL-1.0", "title": "Microsoft Building Footprints", "missionStartDate": "2014-01-01T00:00:00Z"}}}, "usgs_satapi_aws": {"providers_config": {"landsat-c2l2-sr": {"productType": "landsat-c2l2-sr"}, "landsat-c2l2-st": {"productType": "landsat-c2l2-st"}, "landsat-c2ard-st": {"productType": "landsat-c2ard-st"}, "landsat-c2l2alb-bt": {"productType": "landsat-c2l2alb-bt"}, "landsat-c2l3-fsca": {"productType": "landsat-c2l3-fsca"}, "landsat-c2ard-bt": {"productType": "landsat-c2ard-bt"}, "landsat-c2l1": {"productType": "landsat-c2l1"}, "landsat-c2l3-ba": {"productType": "landsat-c2l3-ba"}, "landsat-c2l2alb-st": {"productType": "landsat-c2l2alb-st"}, "landsat-c2ard-sr": {"productType": "landsat-c2ard-sr"}, "landsat-c2l2alb-sr": {"productType": "landsat-c2l2alb-sr"}, "landsat-c2l2alb-ta": {"productType": "landsat-c2l2alb-ta"}, "landsat-c2l3-dswe": {"productType": "landsat-c2l3-dswe"}, "landsat-c2ard-ta": {"productType": "landsat-c2ard-ta"}}, "product_types_config": {"landsat-c2l2-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 UTM Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 UTM Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-bt": {"abstract": "The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-bt,top-of-atmosphere-brightness-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Top of Atmosphere Brightness Temperature (BT) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l3-fsca": {"abstract": "The Landsat Fractional Snow Covered Area (fSCA) product contains an acquisition-based per-pixel snow cover fraction, an acquisition-based revised cloud mask for quality assessment, and a product metadata file.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,fractional-snow-covered-area,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-fsca", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Fractional Snow Covered Area (fSCA) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-bt": {"abstract": "The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-bt,top-of-atmosphere-brightness-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Top of Atmosphere Brightness Temperature (BT) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l1": {"abstract": "The Landsat Level-1 product is a top of atmosphere product distributed as scaled and calibrated digital numbers.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_1,LANDSAT_2,LANDSAT_3,LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-1,landsat-2,landsat-3,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l1", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-1 Product", "missionStartDate": "1972-07-25T00:00:00.000Z"}, "landsat-c2l3-ba": {"abstract": "The Landsat Burned Area (BA) contains two acquisition-based raster data products that represent burn classification and burn probability.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,burned-area,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-ba", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Burned Area (BA) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-ta": {"abstract": "The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-ta,top-of-atmosphere-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Top of Atmosphere (TA) Reflectance Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l3-dswe": {"abstract": "The Landsat Dynamic Surface Water Extent (DSWE) product contains six acquisition-based raster data products pertaining to the existence and condition of surface water.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,dynamic-surface-water-extent-,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-dswe", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Dynamic Surface Water Extent (DSWE) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-ta": {"abstract": "The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-ta,top-of-atmosphere-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Top of Atmosphere (TA) Reflectance Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}}}} +{"astraea_eod": {"providers_config": {"landsat8_c2l1t1": {"productType": "landsat8_c2l1t1"}, "mcd43a4": {"productType": "mcd43a4"}, "mod11a1": {"productType": "mod11a1"}, "mod13a1": {"productType": "mod13a1"}, "myd11a1": {"productType": "myd11a1"}, "myd13a1": {"productType": "myd13a1"}, "maxar_open_data": {"productType": "maxar_open_data"}, "naip": {"productType": "naip"}, "sentinel1_l1c_grd": {"productType": "sentinel1_l1c_grd"}, "sentinel2_l1c": {"productType": "sentinel2_l1c"}, "sentinel2_l2a": {"productType": "sentinel2_l2a"}, "spacenet7": {"productType": "spacenet7"}, "umbra_open_data": {"productType": "umbra_open_data"}}, "product_types_config": {"landsat8_c2l1t1": {"abstract": "Landsat 8 Collection 2 Tier 1 Precision Terrain from Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat8-c2l1t1", "license": "PDDL-1.0", "title": "Landsat 8 - Level 1", "missionStartDate": "2013-03-18T15:59:02.333Z"}, "mcd43a4": {"abstract": "MCD43A4: MODIS/Terra and Aqua Nadir BRDF-Adjusted Reflectance Daily L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mcd43a4", "license": "CC-PDDC", "title": "MCD43A4 NBAR", "missionStartDate": "2000-02-16T00:00:00.000Z"}, "mod11a1": {"abstract": "MOD11A1: MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mod11a1", "license": "CC-PDDC", "title": "MOD11A1 LST", "missionStartDate": "2000-02-24T00:00:00.000Z"}, "mod13a1": {"abstract": "MOD13A1: MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "mod13a1", "license": "CC-PDDC", "title": "MOD13A1 VI", "missionStartDate": "2000-02-18T00:00:00.000Z"}, "myd11a1": {"abstract": "MYD11A1: MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "myd11a1", "license": "CC-PDDC", "title": "MYD11A1 LST", "missionStartDate": "2002-07-04T00:00:00.000Z"}, "myd13a1": {"abstract": "MYD13A1: MODIS/Aqua Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "myd13a1", "license": "CC-PDDC", "title": "MYD13A1 VI", "missionStartDate": "2002-07-04T00:00:00.000Z"}, "maxar_open_data": {"abstract": "Maxar Open Data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "maxar-open-data", "license": "CC-BY-NC-4.0", "title": "Maxar Open Data", "missionStartDate": "2008-01-15T00:00:00.000Z"}, "naip": {"abstract": "National Agriculture Imagery Program aerial imagery", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "naip", "license": "CC-PDDC", "title": "NAIP", "missionStartDate": "2012-04-23T12:00:00.000Z"}, "sentinel1_l1c_grd": {"abstract": "Sentinel-1 Level-1 Ground Range Detected data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel1-l1c-grd", "license": "CC-BY-SA-3.0", "title": "Sentinel-1 L1C GRD", "missionStartDate": "2017-09-27T14:19:16.000"}, "sentinel2_l1c": {"abstract": "Sentinel-2 Level-1C top of atmosphere", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel2-l1c", "license": "CC-BY-SA-3.0", "title": "Sentinel-2 L1C", "missionStartDate": "2015-06-27T10:25:31.456Z"}, "sentinel2_l2a": {"abstract": "Sentinel-2 Level-2A atmospherically corrected data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel2-l2a", "license": "CC-BY-SA-3.0", "title": "Sentinel-2 L2A", "missionStartDate": "2018-04-01T07:02:22.463Z"}, "spacenet7": {"abstract": "SpaceNet 7 Imagery and Labels", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "spacenet7", "license": "CC-BY-SA-4.0", "title": "SpaceNet 7", "missionStartDate": "2018-01-01T00:00:00.000Z"}, "umbra_open_data": {"abstract": "Umbra Open Data", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "umbra-open-data", "license": "proprietary", "title": "Umbra Open Data", "missionStartDate": null}}}, "creodias": {"providers_config": {"LANDSAT-5": {"collection": "LANDSAT-5"}, "SENTINEL-1": {"collection": "SENTINEL-1"}, "SENTINEL-2": {"collection": "SENTINEL-2"}, "ENVISAT": {"collection": "ENVISAT"}, "COP-DEM": {"collection": "COP-DEM"}, "SENTINEL-1-RTC": {"collection": "SENTINEL-1-RTC"}, "SENTINEL-5P": {"collection": "SENTINEL-5P"}, "SMOS": {"collection": "SMOS"}, "LANDSAT-8": {"collection": "LANDSAT-8"}, "S2GLC": {"collection": "S2GLC"}, "TERRAAQUA": {"collection": "TERRAAQUA"}, "SENTINEL-3": {"collection": "SENTINEL-3"}, "LANDSAT-7": {"collection": "LANDSAT-7"}, "SENTINEL-6": {"collection": "SENTINEL-6"}}, "product_types_config": {"LANDSAT-5": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-5", "license": null, "title": "LANDSAT-5", "missionStartDate": null}, "SENTINEL-1": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-1", "license": null, "title": "SENTINEL-1", "missionStartDate": null}, "SENTINEL-2": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-2", "license": null, "title": "SENTINEL-2", "missionStartDate": null}, "ENVISAT": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "envisat", "license": null, "title": "ENVISAT", "missionStartDate": null}, "COP-DEM": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cop-dem", "license": null, "title": "COP-DEM", "missionStartDate": null}, "SENTINEL-1-RTC": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-1-rtc", "license": null, "title": "SENTINEL-1-RTC", "missionStartDate": null}, "SENTINEL-5P": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-5p", "license": null, "title": "SENTINEL-5P", "missionStartDate": null}, "SMOS": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "smos", "license": null, "title": "SMOS", "missionStartDate": null}, "LANDSAT-8": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-8", "license": null, "title": "LANDSAT-8", "missionStartDate": null}, "S2GLC": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "s2glc", "license": null, "title": "S2GLC", "missionStartDate": null}, "TERRAAQUA": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "terraaqua", "license": null, "title": "TERRAAQUA", "missionStartDate": null}, "SENTINEL-3": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-3", "license": null, "title": "SENTINEL-3", "missionStartDate": null}, "LANDSAT-7": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "landsat-7", "license": null, "title": "LANDSAT-7", "missionStartDate": null}, "SENTINEL-6": {"abstract": null, "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "sentinel-6", "license": null, "title": "SENTINEL-6", "missionStartDate": null}}}, "earth_search": {"providers_config": {"sentinel-s2-l2a": {"productType": "sentinel-s2-l2a"}, "sentinel-s2-l1c": {"productType": "sentinel-s2-l1c"}, "landsat-8-l1-c1": {"productType": "landsat-8-l1-c1"}}, "product_types_config": {"sentinel-s2-l2a": {"abstract": "Sentinel-2a and Sentinel-2b imagery, processed to Level 2A (Surface Reflectance)", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "earth-observation,esa,msi,sentinel,sentinel-2,sentinel-2a,sentinel-2b,sentinel-s2-l2a", "license": "proprietary", "title": "Sentinel 2 L2A", "missionStartDate": "2015-06-27T10:25:31.456000Z"}, "sentinel-s2-l1c": {"abstract": "Sentinel-2a and Sentinel-2b imagery, processed to Level 1C (Top-Of-Atmosphere Geometrically Corrected)", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "earth-observation,esa,msi,sentinel,sentinel-2,sentinel-2a,sentinel-2b,sentinel-s2-l1c", "license": "proprietary", "title": "Sentinel 2 L1C", "missionStartDate": "2015-06-27T10:25:31.456000Z"}, "landsat-8-l1-c1": {"abstract": "Landat-8 L1 Collection-1 imagery radiometrically calibrated and orthorectified using gound points and Digital Elevation Model (DEM) data to correct relief displacement.", "instrument": "oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-8", "processingLevel": null, "keywords": "earth-observation,landsat,landsat-8,landsat-8-l1-c1,oli,tirs,usgs", "license": "PDDL-1.0", "title": "Landsat-8 L1 Collection-1", "missionStartDate": "2013-06-01T00:00:00Z"}}}, "earth_search_cog": null, "earth_search_gcs": null, "planetary_computer": {"providers_config": {"daymet-annual-pr": {"productType": "daymet-annual-pr"}, "daymet-daily-hi": {"productType": "daymet-daily-hi"}, "3dep-seamless": {"productType": "3dep-seamless"}, "3dep-lidar-dsm": {"productType": "3dep-lidar-dsm"}, "fia": {"productType": "fia"}, "esa-worldcover": {"productType": "esa-worldcover"}, "sentinel-1-rtc": {"productType": "sentinel-1-rtc"}, "gridmet": {"productType": "gridmet"}, "daymet-annual-na": {"productType": "daymet-annual-na"}, "daymet-monthly-na": {"productType": "daymet-monthly-na"}, "daymet-annual-hi": {"productType": "daymet-annual-hi"}, "daymet-monthly-hi": {"productType": "daymet-monthly-hi"}, "daymet-monthly-pr": {"productType": "daymet-monthly-pr"}, "gnatsgo-tables": {"productType": "gnatsgo-tables"}, "hgb": {"productType": "hgb"}, "cop-dem-glo-30": {"productType": "cop-dem-glo-30"}, "cop-dem-glo-90": {"productType": "cop-dem-glo-90"}, "goes-cmi": {"productType": "goes-cmi"}, "terraclimate": {"productType": "terraclimate"}, "nasa-nex-gddp-cmip6": {"productType": "nasa-nex-gddp-cmip6"}, "gpm-imerg-hhr": {"productType": "gpm-imerg-hhr"}, "gnatsgo-rasters": {"productType": "gnatsgo-rasters"}, "3dep-lidar-hag": {"productType": "3dep-lidar-hag"}, "3dep-lidar-intensity": {"productType": "3dep-lidar-intensity"}, "3dep-lidar-pointsourceid": {"productType": "3dep-lidar-pointsourceid"}, "mtbs": {"productType": "mtbs"}, "landsat-8-c2-l2": {"productType": "landsat-8-c2-l2"}, "noaa-c-cap": {"productType": "noaa-c-cap"}, "3dep-lidar-copc": {"productType": "3dep-lidar-copc"}, "io-lulc-9-class": {"productType": "io-lulc-9-class"}, "modis-64A1-061": {"productType": "modis-64A1-061"}, "alos-fnf-mosaic": {"productType": "alos-fnf-mosaic"}, "3dep-lidar-returns": {"productType": "3dep-lidar-returns"}, "mobi": {"productType": "mobi"}, "landsat-c2-l2": {"productType": "landsat-c2-l2"}, "era5-pds": {"productType": "era5-pds"}, "naip": {"productType": "naip"}, "chloris-biomass": {"productType": "chloris-biomass"}, "kaza-hydroforecast": {"productType": "kaza-hydroforecast"}, "planet-nicfi-analytic": {"productType": "planet-nicfi-analytic"}, "modis-17A2H-061": {"productType": "modis-17A2H-061"}, "modis-11A2-061": {"productType": "modis-11A2-061"}, "daymet-daily-pr": {"productType": "daymet-daily-pr"}, "3dep-lidar-dtm-native": {"productType": "3dep-lidar-dtm-native"}, "3dep-lidar-classification": {"productType": "3dep-lidar-classification"}, "3dep-lidar-dtm": {"productType": "3dep-lidar-dtm"}, "gap": {"productType": "gap"}, "modis-17A2HGF-061": {"productType": "modis-17A2HGF-061"}, "planet-nicfi-visual": {"productType": "planet-nicfi-visual"}, "gbif": {"productType": "gbif"}, "modis-17A3HGF-061": {"productType": "modis-17A3HGF-061"}, "modis-09A1-061": {"productType": "modis-09A1-061"}, "alos-dem": {"productType": "alos-dem"}, "alos-palsar-mosaic": {"productType": "alos-palsar-mosaic"}, "deltares-water-availability": {"productType": "deltares-water-availability"}, "modis-16A3GF-061": {"productType": "modis-16A3GF-061"}, "modis-21A2-061": {"productType": "modis-21A2-061"}, "us-census": {"productType": "us-census"}, "jrc-gsw": {"productType": "jrc-gsw"}, "deltares-floods": {"productType": "deltares-floods"}, "modis-43A4-061": {"productType": "modis-43A4-061"}, "modis-09Q1-061": {"productType": "modis-09Q1-061"}, "modis-14A1-061": {"productType": "modis-14A1-061"}, "hrea": {"productType": "hrea"}, "modis-13Q1-061": {"productType": "modis-13Q1-061"}, "modis-14A2-061": {"productType": "modis-14A2-061"}, "sentinel-2-l2a": {"productType": "sentinel-2-l2a"}, "modis-15A2H-061": {"productType": "modis-15A2H-061"}, "modis-11A1-061": {"productType": "modis-11A1-061"}, "modis-15A3H-061": {"productType": "modis-15A3H-061"}, "modis-10A2-061": {"productType": "modis-10A2-061"}, "modis-10A1-061": {"productType": "modis-10A1-061"}, "modis-13A1-061": {"productType": "modis-13A1-061"}, "daymet-daily-na": {"productType": "daymet-daily-na"}, "nrcan-landcover": {"productType": "nrcan-landcover"}, "ecmwf-forecast": {"productType": "ecmwf-forecast"}, "noaa-mrms-qpe-24h-pass2": {"productType": "noaa-mrms-qpe-24h-pass2"}, "sentinel-1-grd": {"productType": "sentinel-1-grd"}, "nasadem": {"productType": "nasadem"}, "io-lulc": {"productType": "io-lulc"}, "landsat-c2-l1": {"productType": "landsat-c2-l1"}, "drcog-lulc": {"productType": "drcog-lulc"}, "chesapeake-lc-7": {"productType": "chesapeake-lc-7"}, "chesapeake-lc-13": {"productType": "chesapeake-lc-13"}, "chesapeake-lu": {"productType": "chesapeake-lu"}, "noaa-mrms-qpe-1h-pass1": {"productType": "noaa-mrms-qpe-1h-pass1"}, "noaa-mrms-qpe-1h-pass2": {"productType": "noaa-mrms-qpe-1h-pass2"}, "noaa-nclimgrid-monthly": {"productType": "noaa-nclimgrid-monthly"}, "goes-glm": {"productType": "goes-glm"}, "usda-cdl": {"productType": "usda-cdl"}, "eclipse": {"productType": "eclipse"}, "esa-cci-lc": {"productType": "esa-cci-lc"}, "esa-cci-lc-netcdf": {"productType": "esa-cci-lc-netcdf"}, "fws-nwi": {"productType": "fws-nwi"}, "usgs-lcmap-conus-v13": {"productType": "usgs-lcmap-conus-v13"}, "usgs-lcmap-hawaii-v10": {"productType": "usgs-lcmap-hawaii-v10"}, "noaa-climate-normals-tabular": {"productType": "noaa-climate-normals-tabular"}, "noaa-climate-normals-netcdf": {"productType": "noaa-climate-normals-netcdf"}, "noaa-climate-normals-gridded": {"productType": "noaa-climate-normals-gridded"}, "aster-l1t": {"productType": "aster-l1t"}, "cil-gdpcir-cc-by-sa": {"productType": "cil-gdpcir-cc-by-sa"}, "cil-gdpcir-cc-by": {"productType": "cil-gdpcir-cc-by"}, "cil-gdpcir-cc0": {"productType": "cil-gdpcir-cc0"}, "ms-buildings": {"productType": "ms-buildings"}, "io-biodiversity": {"productType": "io-biodiversity"}}, "product_types_config": {"daymet-annual-pr": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-pr,precipitation,puerto-rico,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual Puerto Rico", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-daily-hi": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-hi,hawaii,precipitation,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily Hawaii", "missionStartDate": "1980-01-01T12:00:00Z"}, "3dep-seamless": {"abstract": "U.S.-wide digital elevation data at horizontal resolutions ranging from one to sixty meters.\n\nThe [USGS 3D Elevation Program (3DEP) Datasets](https://www.usgs.gov/core-science-systems/ngp/3dep) from the [National Map](https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map) are the primary elevation data product produced and distributed by the USGS. The 3DEP program provides raster elevation data for the conterminous United States, Alaska, Hawaii, and the island territories, at a variety of spatial resolutions. The seamless DEM layers produced by the 3DEP program are updated frequently to integrate newly available, improved elevation source data. \n\nDEM layers are available nationally at grid spacings of 1 arc-second (approximately 30 meters) for the conterminous United States, and at approximately 1, 3, and 9 meters for parts of the United States. Most seamless DEM data for Alaska is available at a resolution of approximately 60 meters, where only lower resolution source data exist.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-seamless,dem,elevation,ned,usgs", "license": "PDDL-1.0", "title": "USGS 3DEP Seamless DEMs", "missionStartDate": "1925-01-01T00:00:00Z"}, "3dep-lidar-dsm": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Surface Model (DSM) using [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to output a collection of Cloud Optimized GeoTIFFs, removing all points that have been classified as noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dsm,cog,dsm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Surface Model", "missionStartDate": "2012-01-01T00:00:00Z"}, "fia": {"abstract": "Status and trends on U.S. forest location, health, growth, mortality, and production, from the U.S. Forest Service's [Forest Inventory and Analysis](https://www.fia.fs.fed.us/) (FIA) program.\n\nThe Forest Inventory and Analysis (FIA) dataset is a nationwide survey of the forest assets of the United States. The FIA research program has been in existence since 1928. FIA's primary objective is to determine the extent, condition, volume, growth, and use of trees on the nation's forest land.\n\nDomain: continental U.S., 1928-2018\n\nResolution: plot-level (irregular polygon)\n\nThis dataset was curated and brought to Azure by [CarbonPlan](https://carbonplan.org/).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,fia,forest,forest-service,species,usda", "license": "CC0-1.0", "title": "Forest Inventory and Analysis", "missionStartDate": "2020-06-01T00:00:00Z"}, "esa-worldcover": {"abstract": "The European Space Agency (ESA) [WorldCover](https://esa-worldcover.org/en) is a global land cover map for the year 2020 produced at 10 meter resolution based on the combination of [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) radar data and [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) imagery. The discrete classification map provides 11 classes and is defined using the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (FAO).\n\nThe WorldCover product was developed by a consortium of European service providers and research organizations. [VITO](https://remotesensing.vito.be/) (Belgium) is the prime contractor of the WorldCover consortium together with [Brockmann Consult](https://www.brockmann-consult.de/) (Germany), [CS SI](https://www.c-s.fr/) (France), [Gamma Remote Sensing AG](https://www.gamma-rs.ch/) (Switzerland), [International Institute for Applied Systems Analysis](https://www.iiasa.ac.at/) (Austria), and [Wageningen University](https://www.wur.nl/nl/Wageningen-University.htm) (The Netherlands).\n\n A [Product User Manual](https://esa-worldcover.s3.amazonaws.com/v100/2020/docs/WorldCover_PUM_V1.0.pdf) and [Product Validation Report](https://worldcover2020.esa.int/data/docs/WorldCover_PVR_V1.1.pdf) are available for further information. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": "c-sar,msi", "platform": null, "platformSerialIdentifier": "sentinel-1a,sentinel-1b,sentinel-2a,sentinel-2b", "processingLevel": null, "keywords": "c-sar,esa,esa-worldcover,global,land-cover,msi,sentinel,sentinel-1a,sentinel-1b,sentinel-2a,sentinel-2b", "license": "CC-BY-4.0", "title": "ESA WorldCover 2020", "missionStartDate": "2020-01-01T00:00:00Z"}, "sentinel-1-rtc": {"abstract": "The [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) mission is a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging. The Sentinel-1 Radiometrically Terrain Corrected (RTC) data in this collection is a radiometrically terrain corrected product derived from the [Ground Range Detected (GRD) Level-1](https://planetarycomputer.microsoft.com/dataset/sentinel-1-grd) products produced by the European Space Agency. The RTC processing is performed by [Catalyst](https://catalyst.earth/).\n\nRadiometric Terrain Correction accounts for terrain variations that affect both the position of a given point on the Earth's surface and the brightness of the radar return, as expressed in radar geometry. Without treatment, the hill-slope modulations of the radiometry threaten to overwhelm weaker thematic land cover-induced backscatter differences. Additionally, comparison of backscatter from multiple satellites, modes, or tracks loses meaning.\n\nA Planetary Computer account is required to retrieve SAS tokens to read the RTC data. See the [documentation](http://planetarycomputer.microsoft.com/docs/concepts/sas/#when-an-account-is-needed) for more information.\n\n### Methodology\n\nThe Sentinel-1 GRD product is converted to calibrated intensity using the conversion algorithm described in the ESA technical note ESA-EOPG-CSCOP-TN-0002, [Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF](https://ai4edatasetspublicassets.blob.core.windows.net/assets/pdfs/sentinel-1/S1-Radiometric-Calibration-V1.0.pdf). The flat earth calibration values for gamma correction (i.e. perpendicular to the radar line of sight) are extracted from the GRD metadata. The calibration coefficients are applied as a two-dimensional correction in range (by sample number) and azimuth (by time). All available polarizations are calibrated and written as separate layers of a single file. The calibrated SAR output is reprojected to nominal map orientation with north at the top and west to the left.\n\nThe data is then radiometrically terrain corrected using PlanetDEM as the elevation source. The correction algorithm is nominally based upon D. Small, [\u201cFlattening Gamma: Radiometric Terrain Correction for SAR Imagery\u201d](https://ai4edatasetspublicassets.blob.core.windows.net/assets/pdfs/sentinel-1/2011_Flattening_Gamma.pdf), IEEE Transactions on Geoscience and Remote Sensing, Vol 49, No 8., August 2011, pp 3081-3093. For each image scan line, the digital elevation model is interpolated to determine the elevation corresponding to the position associated with the known near slant range distance and arc length for each input pixel. The elevations at the four corners of each pixel are estimated using bilinear resampling. The four elevations are divided into two triangular facets and reprojected onto the plane perpendicular to the radar line of sight to provide an estimate of the area illuminated by the radar for each earth flattened pixel. The uncalibrated sum at each earth flattened pixel is normalized by dividing by the flat earth surface area. The adjustment for gamma intensity is given by dividing the normalized result by the cosine of the incident angle. Pixels which are not illuminated by the radar due to the viewing geometry are flagged as shadow.\n\nCalibrated data is then orthorectified to the appropriate UTM projection. The orthorectified output maintains the original sample sizes (in range and azimuth) and was not shifted to any specific grid.\n\nRTC data is processed only for the Interferometric Wide Swath (IW) mode, which is the main acquisition mode over land and satisfies the majority of service requirements.\n", "instrument": null, "platform": "Sentinel-1", "platformSerialIdentifier": "SENTINEL-1A,SENTINEL-1B", "processingLevel": null, "keywords": "c-band,copernicus,esa,rtc,sar,sentinel,sentinel-1,sentinel-1-rtc,sentinel-1a,sentinel-1b", "license": "CC-BY-4.0", "title": "Sentinel 1 Radiometrically Terrain Corrected (RTC)", "missionStartDate": "2014-10-10T00:28:21Z"}, "gridmet": {"abstract": "gridMET is a dataset of daily surface meteorological data at approximately four-kilometer resolution, covering the contiguous U.S. from 1979 to the present. These data can provide important inputs for ecological, agricultural, and hydrological models.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,gridmet,precipitation,temperature,vapor-pressure,water", "license": "CC0-1.0", "title": "gridMET", "missionStartDate": "1979-01-01T00:00:00Z"}, "daymet-annual-na": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-na,north-america,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual North America", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-monthly-na": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-na,north-america,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly North America", "missionStartDate": "1980-01-16T12:00:00Z"}, "daymet-annual-hi": {"abstract": "Annual climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1852](https://doi.org/10.3334/ORNLDAAC/1852) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#annual). \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-annual-hi,hawaii,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Annual Hawaii", "missionStartDate": "1980-07-01T12:00:00Z"}, "daymet-monthly-hi": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-hi,hawaii,precipitation,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly Hawaii", "missionStartDate": "1980-01-16T12:00:00Z"}, "daymet-monthly-pr": {"abstract": "Monthly climate summaries derived from [Daymet](https://daymet.ornl.gov) Version 4 daily data at a 1 km x 1 km spatial resolution for five variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Annual averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and annual totals are provided for the precipitation variable.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1855](https://doi.org/10.3334/ORNLDAAC/1855) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#monthly).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,daymet,daymet-monthly-pr,precipitation,puerto-rico,temperature,vapor-pressure", "license": "proprietary", "title": "Daymet Monthly Puerto Rico", "missionStartDate": "1980-01-16T12:00:00Z"}, "gnatsgo-tables": {"abstract": "This collection contains the table data for gNATSGO. This table data can be used to determine the values of raster data cells for Items in the [gNATSGO Rasters](https://planetarycomputer.microsoft.com/dataset/gnatsgo-rasters) Collection.\n\nThe gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS Soil & Plant Science Division (SPSD) composite database that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase.\n\nSSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods.\n\nThe gNATSGO database is composed primarily of SSURGO data, but STATSGO2 data was used to fill in the gaps. The RSSs are newer product with relatively limited spatial extent. These RSSs were merged into the gNATSGO after combining the SSURGO and STATSGO2 data. The extent of RSS is expected to increase in the coming years.\n\nSee the [official documentation](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gnatsgo-tables,natsgo,rss,soils,ssurgo,statsgo2,united-states,usda", "license": "CC0-1.0", "title": "gNATSGO Soil Database - Tables", "missionStartDate": "2020-07-01T00:00:00Z"}, "hgb": {"abstract": "This dataset provides temporally consistent and harmonized global maps of aboveground and belowground biomass carbon density for the year 2010 at 300m resolution. The aboveground biomass map integrates land-cover-specific, remotely sensed maps of woody, grassland, cropland, and tundra biomass. Input maps were amassed from the published literature and, where necessary, updated to cover the focal extent or time period. The belowground biomass map similarly integrates matching maps derived from each aboveground biomass map and land-cover-specific empirical models. Aboveground and belowground maps were then integrated separately using ancillary maps of percent tree/land cover and a rule-based decision tree. Maps reporting the accumulated uncertainty of pixel-level estimates are also provided.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,hgb,ornl", "license": "proprietary", "title": "HGB: Harmonized Global Biomass for 2010", "missionStartDate": "2010-12-31T00:00:00Z"}, "cop-dem-glo-30": {"abstract": "The Copernicus DEM is a digital surface model (DSM), which represents the surface of the Earth including buildings, infrastructure, and vegetation. This DSM is based on radar satellite data acquired during the TanDEM-X Mission, which was funded by a public-private partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space.\n\nCopernicus DEM is available at both 30-meter and 90-meter resolution; this dataset has a horizontal resolution of approximately 30 meters.\n\nSee the [Product Handbook](https://object.cloud.sdsc.edu/v1/AUTH_opentopography/www/metadata/Copernicus_metadata.pdf) for more information.\n\nSee the dataset page on OpenTopography: \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": "tandem-x", "processingLevel": null, "keywords": "cop-dem-glo-30,copernicus,dem,dsm,elevation,tandem-x", "license": "proprietary", "title": "Copernicus DEM GLO-30", "missionStartDate": "2021-04-22T00:00:00Z"}, "cop-dem-glo-90": {"abstract": "The Copernicus DEM is a digital surface model (DSM), which represents the surface of the Earth including buildings, infrastructure, and vegetation. This DSM is based on radar satellite data acquired during the TanDEM-X Mission, which was funded by a public-private partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space.\n\nCopernicus DEM is available at both 30-meter and 90-meter resolution; this dataset has a horizontal resolution of approximately 90 meters.\n\nSee the [Product Handbook](https://object.cloud.sdsc.edu/v1/AUTH_opentopography/www/metadata/Copernicus_metadata.pdf) for more information.\n\nSee the dataset page on OpenTopography: \n\n", "instrument": null, "platform": null, "platformSerialIdentifier": "tandem-x", "processingLevel": null, "keywords": "cop-dem-glo-90,copernicus,dem,elevation,tandem-x", "license": "proprietary", "title": "Copernicus DEM GLO-90", "missionStartDate": "2021-04-22T00:00:00Z"}, "goes-cmi": {"abstract": "The GOES-R Advanced Baseline Imager (ABI) L2 Cloud and Moisture Imagery product provides 16 reflective and emissive bands at high temporal cadence over the Western Hemisphere.\n\nThe GOES-R series is the latest in the Geostationary Operational Environmental Satellites (GOES) program, which has been operated in a collaborative effort by NOAA and NASA since 1975. The operational GOES-R Satellites, GOES-16, GOES-17, and GOES-18, capture 16-band imagery from geostationary orbits over the Western Hemisphere via the Advance Baseline Imager (ABI) radiometer. The ABI captures 2 visible, 4 near-infrared, and 10 infrared channels at resolutions between 0.5km and 2km.\n\n### Geographic coverage\n\nThe ABI captures three levels of coverage, each at a different temporal cadence depending on the modes described below. The geographic coverage for each image is described by the `goes:image-type` STAC Item property.\n\n- _FULL DISK_: a circular image depicting nearly full coverage of the Western Hemisphere.\n- _CONUS_: a 3,000 (lat) by 5,000 (lon) km rectangular image depicting the Continental U.S. (GOES-16) or the Pacific Ocean including Hawaii (GOES-17).\n- _MESOSCALE_: a 1,000 by 1,000 km rectangular image. GOES-16 and 17 both alternate between two different mesoscale geographic regions.\n\n### Modes\n\nThere are three standard scanning modes for the ABI instrument: Mode 3, Mode 4, and Mode 6.\n\n- Mode _3_ consists of one observation of the full disk scene of the Earth, three observations of the continental United States (CONUS), and thirty observations for each of two distinct mesoscale views every fifteen minutes.\n- Mode _4_ consists of the observation of the full disk scene every five minutes.\n- Mode _6_ consists of one observation of the full disk scene of the Earth, two observations of the continental United States (CONUS), and twenty observations for each of two distinct mesoscale views every ten minutes.\n\nThe mode that each image was captured with is described by the `goes:mode` STAC Item property.\n\nSee this [ABI Scan Mode Demonstration](https://youtu.be/_c5H6R-M0s8) video for an idea of how the ABI scans multiple geographic regions over time.\n\n### Cloud and Moisture Imagery\n\nThe Cloud and Moisture Imagery product contains one or more images with pixel values identifying \"brightness values\" that are scaled to support visual analysis. Cloud and Moisture Imagery product (CMIP) files are generated for each of the sixteen ABI reflective and emissive bands. In addition, there is a multi-band product file that includes the imagery at all bands (MCMIP).\n\nThe Planetary Computer STAC Collection `goes-cmi` captures both the CMIP and MCMIP product files into individual STAC Items for each observation from a GOES-R satellite. It contains the original CMIP and MCMIP NetCDF files, as well as cloud-optimized GeoTIFF (COG) exports of the data from each MCMIP band (2km); the full-resolution CMIP band for bands 1, 2, 3, and 5; and a Web Mercator COG of bands 1, 2 and 3, which are useful for rendering.\n\nThis product is not in a standard coordinate reference system (CRS), which can cause issues with some tooling that does not handle non-standard large geographic regions.\n\n### For more information\n- [Beginner\u2019s Guide to GOES-R Series Data](https://www.goes-r.gov/downloads/resources/documents/Beginners_Guide_to_GOES-R_Series_Data.pdf)\n- [GOES-R Series Product Definition and Users\u2019 Guide: Volume 5 (Level 2A+ Products)](https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf) ([Spanish verison](https://github.com/NOAA-Big-Data-Program/bdp-data-docs/raw/main/GOES/QuickGuides/Spanish/Guia%20introductoria%20para%20datos%20de%20la%20serie%20GOES-R%20V1.1%20FINAL2%20-%20Copy.pdf))\n\n", "instrument": "ABI", "platform": null, "platformSerialIdentifier": "GOES-16,GOES-17,GOES-18", "processingLevel": null, "keywords": "abi,cloud,goes,goes-16,goes-17,goes-18,goes-cmi,moisture,nasa,noaa,satellite", "license": "proprietary", "title": "GOES-R Cloud & Moisture Imagery", "missionStartDate": "2017-02-28T00:16:52Z"}, "terraclimate": {"abstract": "[TerraClimate](http://www.climatologylab.org/terraclimate.html) is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958 to the present. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. This dataset is provided in [Zarr](https://zarr.readthedocs.io/) format.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,precipitation,temperature,terraclimate,vapor-pressure,water", "license": "CC0-1.0", "title": "TerraClimate", "missionStartDate": "1958-01-01T00:00:00Z"}, "nasa-nex-gddp-cmip6": {"abstract": "The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four \u201cTier 1\u201d greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed through the Earth System Grid Federation. The purpose of this dataset is to provide a set of global, high resolution, bias-corrected climate change projections that can be used to evaluate climate change impacts on processes that are sensitive to finer-scale climate gradients and the effects of local topography on climate conditions.\n\nThe [NASA Center for Climate Simulation](https://www.nccs.nasa.gov/) maintains the [next-gddp-cmip6 product page](https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6) where you can find more information about these datasets. Users are encouraged to review the [technote](https://www.nccs.nasa.gov/sites/default/files/NEX-GDDP-CMIP6-Tech_Note.pdf), provided alongside the data set, where more detailed information, references and acknowledgements can be found.\n\nThis collection contains many NetCDF files. There is one NetCDF file per `(model, scenario, variable, year)` tuple.\n\n- **model** is the name of a modeling group (e.g. \"ACCESS-CM-2\"). See the `cmip6:model` summary in the STAC collection for a full list of models.\n- **scenario** is one of \"historical\", \"ssp245\" or \"ssp585\".\n- **variable** is one of \"hurs\", \"huss\", \"pr\", \"rlds\", \"rsds\", \"sfcWind\", \"tas\", \"tasmax\", \"tasmin\".\n- **year** depends on the value of *scenario*. For \"historical\", the values range from 1950 to 2014 (inclusive). For \"ssp245\" and \"ssp585\", the years range from 2015 to 2100 (inclusive).\n\nIn addition to the NetCDF files, we provide some *experimental* **reference files** as collection-level dataset assets. These are JSON files implementing the [references specification](https://fsspec.github.io/kerchunk/spec.html).\nThese files include the positions of data variables within the binary NetCDF files, which can speed up reading the metadata. See the example notebook for more.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,cmip6,humidity,nasa,nasa-nex-gddp-cmip6,precipitation,temperature", "license": "proprietary", "title": "Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)", "missionStartDate": "1950-01-01T00:00:00Z"}, "gpm-imerg-hhr": {"abstract": "The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm combines information from the [GPM satellite constellation](https://gpm.nasa.gov/missions/gpm/constellation) to estimate precipitation over the majority of the Earth's surface. This algorithm is particularly valuable over the majority of the Earth's surface that lacks precipitation-measuring instruments on the ground. Now in the latest Version 06 release of IMERG the algorithm fuses the early precipitation estimates collected during the operation of the TRMM satellite (2000 - 2015) with more recent precipitation estimates collected during operation of the GPM satellite (2014 - present). The longer the record, the more valuable it is, as researchers and application developers will attest. By being able to compare and contrast past and present data, researchers are better informed to make climate and weather models more accurate, better understand normal and extreme rain and snowfall around the world, and strengthen applications for current and future disasters, disease, resource management, energy production and food security.\n\nFor more, see the [IMERG homepage](https://gpm.nasa.gov/data/imerg) The [IMERG Technical documentation](https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_doc_201006.pdf) provides more information on the algorithm, input datasets, and output products.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gpm,gpm-imerg-hhr,imerg,precipitation", "license": "proprietary", "title": "GPM IMERG", "missionStartDate": "2000-06-01T00:00:00Z"}, "gnatsgo-rasters": {"abstract": "This collection contains the raster data for gNATSGO. In order to use the map unit values contained in the `mukey` raster asset, you'll need to join to tables represented as Items in the [gNATSGO Tables](https://planetarycomputer.microsoft.com/dataset/gnatsgo-tables) Collection. Many items have commonly used values encoded in additional raster assets.\n\nThe gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS Soil & Plant Science Division (SPSD) composite database that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase.\n\nSSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods.\n\nThe gNATSGO database is composed primarily of SSURGO data, but STATSGO2 data was used to fill in the gaps. The RSSs are newer product with relatively limited spatial extent. These RSSs were merged into the gNATSGO after combining the SSURGO and STATSGO2 data. The extent of RSS is expected to increase in the coming years.\n\nSee the [official documentation](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gnatsgo-rasters,natsgo,rss,soils,ssurgo,statsgo2,united-states,usda", "license": "CC0-1.0", "title": "gNATSGO Soil Database - Rasters", "missionStartDate": "2020-07-01T00:00:00Z"}, "3dep-lidar-hag": {"abstract": "This COG type is generated using the Z dimension of the [COPC data](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc) data and removes noise, water, and using [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf) followed by [pdal.filters.hag_nn](https://pdal.io/stages/filters.hag_nn.html#filters-hag-nn).\n\nThe Height Above Ground Nearest Neighbor filter takes as input a point cloud with Classification set to 2 for ground points. It creates a new dimension, HeightAboveGround, that contains the normalized height values.\n\nGround points may be generated with [`pdal.filters.pmf`](https://pdal.io/stages/filters.pmf.html#filters-pmf) or [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf), but you can use any method you choose, as long as the ground returns are marked.\n\nNormalized heights are a commonly used attribute of point cloud data. This can also be referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it is simply a measure of a point's relative height as opposed to its raw elevation value.\n\nThe filter finds the number of ground points nearest to the non-ground point under consideration. It calculates an average ground height weighted by the distance of each ground point from the non-ground point. The HeightAboveGround is the difference between the Z value of the non-ground point and the interpolated ground height.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-hag,cog,elevation,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Height above Ground", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-intensity": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the pulse return magnitude.\n\nThe values are based on the Intensity [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-intensity,cog,intensity,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Intensity", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-pointsourceid": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the file source ID from which the point originated. Zero indicates that the point originated in the current file.\n\nThis values are based on the PointSourceId [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-pointsourceid,cog,pointsourceid,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Point Source", "missionStartDate": "2012-01-01T00:00:00Z"}, "mtbs": {"abstract": "[Monitoring Trends in Burn Severity](https://www.mtbs.gov/) (MTBS) is an inter-agency program whose goal is to consistently map the burn severity and extent of large fires across the United States from 1984 to the present. This includes all fires 1000 acres or greater in the Western United States and 500 acres or greater in the Eastern United States. The burn severity mosaics in this dataset consist of thematic raster images of MTBS burn severity classes for all currently completed MTBS fires for the continental United States and Alaska.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "fire,forest,mtbs,usda,usfs,usgs", "license": "proprietary", "title": "MTBS: Monitoring Trends in Burn Severity", "missionStartDate": "1984-12-31T00:00:00Z"}, "landsat-8-c2-l2": {"abstract": "The [Landsat](https://landsat.gsfc.nasa.gov/) program has been imaging the Earth since 1972; it provides a comprehensive, continuous archive of the Earth's surface. [Landsat 8](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8) is the most recent satellite in the Landsat series. Launched in 2013, Landsat 8 captures data in eleven spectral bands: ten optical/IR bands from the [Operational Land Imager](https://landsat.gsfc.nasa.gov/landsat-8/operational-land-imager) (OLI) instrument, and two thermal bands from the [Thermal Infrared Sensor](https://landsat.gsfc.nasa.gov/landsat-8/thermal-infrared-sensor-tirs) (TIRS) instrument.\n\nThis dataset represents the global archive of Level-2 Landsat 8 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2). Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-8", "processingLevel": null, "keywords": "global,imagery,landsat,landsat-8,landsat-8-c2-l2,nasa,oli,reflectance,satellite,tirs,usgs", "license": "proprietary", "title": "Landsat 8 Collection 2 Level-2", "missionStartDate": "2013-04-11T00:00:00Z"}, "noaa-c-cap": {"abstract": "Nationally standardized, raster-based inventories of land cover for the coastal areas of the U.S. Data are derived, through the Coastal Change Analysis Program, from the analysis of multiple dates of remotely sensed imagery. Two file types are available: individual dates that supply a wall-to-wall map, and change files that compare one date to another. The use of standardized data and procedures assures consistency through time and across geographies. C-CAP data forms the coastal expression of the National Land Cover Database (NLCD) and the A-16 land cover theme of the National Spatial Data Infrastructure. The data are updated every 5 years.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "coastal,land-cover,land-use,noaa,noaa-c-cap", "license": "proprietary", "title": "C-CAP Regional Land Cover and Change", "missionStartDate": "1975-01-01T00:00:00Z"}, "3dep-lidar-copc": {"abstract": "This collection contains source data from the [USGS 3DEP program](https://www.usgs.gov/3d-elevation-program) reformatted into the [COPC](https://copc.io) format. A COPC file is a LAZ 1.4 file that stores point data organized in a clustered octree. It contains a VLR that describes the octree organization of data that are stored in LAZ 1.4 chunks. The end product is a one-to-one mapping of LAZ to UTM-reprojected COPC files.\n\nLAZ data is geospatial [LiDAR point cloud](https://en.wikipedia.org/wiki/Point_cloud) (LPC) content stored in the compressed [LASzip](https://laszip.org?) format. Data were reorganized and stored in LAZ-compatible [COPC](https://copc.io) organization for use in Planetary Computer, which supports incremental spatial access and cloud streaming.\n\nLPC can be summarized for construction of digital terrain models (DTM), filtered for extraction of features like vegetation and buildings, and visualized to provide a point cloud map of the physical spaces the laser scanner interacted with. LPC content from 3DEP is used to compute and extract a variety of landscape characterization products, and some of them are provided by Planetary Computer, including Height Above Ground, Relative Intensity Image, and DTM and Digital Surface Models.\n\nThe LAZ tiles represent a one-to-one mapping of original tiled content as provided by the [USGS 3DEP program](https://www.usgs.gov/3d-elevation-program), with the exception that the data were reprojected and normalized into appropriate UTM zones for their location without adjustment to the vertical datum. In some cases, vertical datum description may not match actual data values, especially for pre-2010 USGS 3DEP point cloud data.\n\nIn addition to these COPC files, various higher-level derived products are available as Cloud Optimized GeoTIFFs in [other collections](https://planetarycomputer.microsoft.com/dataset/group/3dep-lidar).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-copc,cog,point-cloud,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Point Cloud", "missionStartDate": "2012-01-01T00:00:00Z"}, "io-lulc-9-class": {"abstract": "Time series of annual global maps of land use and land cover (LULC). It currently has data from 2017-2022. The maps are derived from ESA Sentinel-2 imagery at 10m resolution. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year.\n\nThis dataset was generated by [Impact Observatory](http://impactobservatory.com/), who used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. The global map was produced by applying this model to the Sentinel-2 annual scene collections on the Planetary Computer. Each of the maps has an assessed average accuracy of over 75%.\n\nThis map uses an updated model from the [10-class model](https://planetarycomputer.microsoft.com/dataset/io-lulc) and combines Grass(formerly class 3) and Scrub (formerly class 6) into a single Rangeland class (class 11). The original Esri 2020 Land Cover collection uses 10 classes (Grass and Scrub separate) and an older version of the underlying deep learning model. The Esri 2020 Land Cover map was also produced by Impact Observatory. The map remains available for use in existing applications. New applications should use the updated version of 2020 once it is available in this collection, especially when using data from multiple years of this time series, to ensure consistent classification.\n\nAll years are available under a Creative Commons BY-4.0.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,io-lulc-9-class,land-cover,land-use,sentinel", "license": "CC-BY-4.0", "title": "10m Annual Land Use Land Cover (9-class)", "missionStartDate": "2017-01-01T00:00:00Z"}, "modis-64A1-061": {"abstract": "The Terra and Aqua combined MCD64A1 Version 6.1 Burned Area data product is a monthly, global gridded 500 meter (m) product containing per-pixel burned-area and quality information. The MCD64A1 burned-area mapping approach employs 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance imagery coupled with 1 kilometer (km) MODIS active fire observations. The algorithm uses a burn sensitive Vegetation Index (VI) to create dynamic thresholds that are applied to the composite data. The VI is derived from MODIS shortwave infrared atmospherically corrected surface reflectance bands 5 and 7 with a measure of temporal texture. The algorithm identifies the date of burn for the 500 m grid cells within each individual MODIS tile. The date is encoded in a single data layer as the ordinal day of the calendar year on which the burn occurred with values assigned to unburned land pixels and additional special values reserved for missing data and water grid cells. The data layers provided in the MCD64A1 product include Burn Date, Burn Data Uncertainty, Quality Assurance, along with First Day and Last Day of reliable change detection of the year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,imagery,mcd64a1,modis,modis-64a1-061,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Burned Area Monthly", "missionStartDate": "2000-11-01T00:00:00Z"}, "alos-fnf-mosaic": {"abstract": "The global 25m resolution SAR mosaics and forest/non-forest maps are free and open annual datasets generated by [JAXA](https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm) using the L-band Synthetic Aperture Radar sensors on the Advanced Land Observing Satellite-2 (ALOS-2 PALSAR-2), the Advanced Land Observing Satellite (ALOS PALSAR) and the Japanese Earth Resources Satellite-1 (JERS-1 SAR).\n\nThe global forest/non-forest maps (FNF) were generated by a Random Forest machine learning-based classification method, with the re-processed global 25m resolution [PALSAR-2 mosaic dataset](https://planetarycomputer.microsoft.com/dataset/alos-palsar-mosaic) (Ver. 2.0.0) as input. Here, the \"forest\" is defined as the tree covered land with an area larger than 0.5 ha and a canopy cover of over 10 %, in accordance with the FAO definition of forest. The classification results are presented in four categories, with two categories of forest areas: forests with a canopy cover of 90 % or more and forests with a canopy cover of 10 % to 90 %, depending on the density of the forest area.\n\nSee the [Product Description](https://www.eorc.jaxa.jp/ALOS/en/dataset/pdf/DatasetDescription_PALSAR2_FNF_V200.pdf) for more details.\n", "instrument": "PALSAR,PALSAR-2", "platform": null, "platformSerialIdentifier": "ALOS,ALOS-2", "processingLevel": null, "keywords": "alos,alos-2,alos-fnf-mosaic,forest,global,jaxa,land-cover,palsar,palsar-2", "license": "proprietary", "title": "ALOS Forest/Non-Forest Annual Mosaic", "missionStartDate": "2015-01-01T00:00:00Z"}, "3dep-lidar-returns": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It is a collection of Cloud Optimized GeoTIFFs representing the number of returns for a given pulse.\n\nThis values are based on the PointSourceId [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.\n\nThe values are based on the NumberOfReturns [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.outlier`](https://pdal.io/stages/filters.outlier.html#filters-outlier) and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to remove outliers and noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-returns,cog,numberofreturns,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Returns", "missionStartDate": "2012-01-01T00:00:00Z"}, "mobi": {"abstract": "The [Map of Biodiversity Importance](https://www.natureserve.org/conservation-tools/projects/map-biodiversity-importance) (MoBI) consists of raster maps that combine habitat information for 2,216 imperiled species occurring in the conterminous United States, using weightings based on range size and degree of protection to identify areas of high importance for biodiversity conservation. Species included in the project are those which, as of September 2018, had a global conservation status of G1 (critical imperiled) or G2 (imperiled) or which are listed as threatened or endangered at the full species level under the United States Endangered Species Act. Taxonomic groups included in the project are vertebrates (birds, mammals, amphibians, reptiles, turtles, crocodilians, and freshwater and anadromous fishes), vascular plants, selected aquatic invertebrates (freshwater mussels and crayfish) and selected pollinators (bumblebees, butterflies, and skippers).\n\nThere are three types of spatial data provided, described in more detail below: species richness, range-size rarity, and protection-weighted range-size rarity. For each type, this data set includes five different layers – one for all species combined, and four additional layers that break the data down by taxonomic group (vertebrates, plants, freshwater invertebrates, and pollinators) – for a total of fifteen layers.\n\nThese data layers are intended to identify areas of high potential value for on-the-ground biodiversity protection efforts. As a synthesis of predictive models, they cannot guarantee either the presence or absence of imperiled species at a given location. For site-specific decision-making, these data should be used in conjunction with field surveys and/or documented occurrence data, such as is available from the [NatureServe Network](https://www.natureserve.org/natureserve-network).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biodiversity,mobi,natureserve,united-states", "license": "proprietary", "title": "MoBI: Map of Biodiversity Importance", "missionStartDate": "2020-04-14T00:00:00Z"}, "landsat-c2-l2": {"abstract": "Landsat Collection 2 Level-2 [Science Products](https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products), consisting of atmospherically corrected [surface reflectance](https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance) and [surface temperature](https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature) image data. Collection 2 Level-2 Science Products are available from August 22, 1982 to present.\n\nThis dataset represents the global archive of Level-2 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2) acquired by the [Thematic Mapper](https://landsat.gsfc.nasa.gov/thematic-mapper/) onboard Landsat 4 and 5, the [Enhanced Thematic Mapper](https://landsat.gsfc.nasa.gov/the-enhanced-thematic-mapper-plus-etm/) onboard Landsat 7, and the [Operatational Land Imager](https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/operational-land-imager/) and [Thermal Infrared Sensor](https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/thermal-infrared-sensor/) onboard Landsat 8 and 9. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "tm,etm+,oli,tirs", "platform": null, "platformSerialIdentifier": "landsat-4,landsat-5,landsat-7,landsat-8,landsat-9", "processingLevel": null, "keywords": "etm+,global,imagery,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2-l2,nasa,oli,reflectance,satellite,temperature,tirs,tm,usgs", "license": "proprietary", "title": "Landsat Collection 2 Level-2", "missionStartDate": "1982-08-22T00:00:00Z"}, "era5-pds": {"abstract": "ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate\ncovering the period from January 1950 to present. ERA5 is produced by the\nCopernicus Climate Change Service (C3S) at ECMWF.\n\nReanalysis combines model data with observations from across the world into a\nglobally complete and consistent dataset using the laws of physics. This\nprinciple, called data assimilation, is based on the method used by numerical\nweather prediction centres, where every so many hours (12 hours at ECMWF) a\nprevious forecast is combined with newly available observations in an optimal\nway to produce a new best estimate of the state of the atmosphere, called\nanalysis, from which an updated, improved forecast is issued. Reanalysis works\nin the same way, but at reduced resolution to allow for the provision of a\ndataset spanning back several decades. Reanalysis does not have the constraint\nof issuing timely forecasts, so there is more time to collect observations, and\nwhen going further back in time, to allow for the ingestion of improved versions\nof the original observations, which all benefit the quality of the reanalysis\nproduct.\n\nThis dataset was converted to Zarr by [Planet OS](https://planetos.com/).\nSee [their documentation](https://github.com/planet-os/notebooks/blob/master/aws/era5-pds.md)\nfor more.\n\n## STAC Metadata\n\nTwo types of data variables are provided: \"forecast\" (`fc`) and \"analysis\" (`an`).\n\n* An **analysis**, of the atmospheric conditions, is a blend of observations\n with a previous forecast. An analysis can only provide\n [instantaneous](https://confluence.ecmwf.int/display/CKB/Model+grid+box+and+time+step)\n parameters (parameters valid at a specific time, e.g temperature at 12:00),\n but not accumulated parameters, mean rates or min/max parameters.\n* A **forecast** starts with an analysis at a specific time (the 'initialization\n time'), and a model computes the atmospheric conditions for a number of\n 'forecast steps', at increasing 'validity times', into the future. A forecast\n can provide\n [instantaneous](https://confluence.ecmwf.int/display/CKB/Model+grid+box+and+time+step)\n parameters, accumulated parameters, mean rates, and min/max parameters.\n\nEach [STAC](https://stacspec.org/) item in this collection covers a single month\nand the entire globe. There are two STAC items per month, one for each type of data\nvariable (`fc` and `an`). The STAC items include an `ecmwf:kind` properties to\nindicate which kind of variables that STAC item catalogs.\n\n## How to acknowledge, cite and refer to ERA5\n\nAll users of data on the Climate Data Store (CDS) disks (using either the web interface or the CDS API) must provide clear and visible attribution to the Copernicus programme and are asked to cite and reference the dataset provider:\n\nAcknowledge according to the [licence to use Copernicus Products](https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf).\n\nCite each dataset used as indicated on the relevant CDS entries (see link to \"Citation\" under References on the Overview page of the dataset entry).\n\nThroughout the content of your publication, the dataset used is referred to as Author (YYYY).\n\nThe 3-steps procedure above is illustrated with this example: [Use Case 2: ERA5 hourly data on single levels from 1979 to present](https://confluence.ecmwf.int/display/CKB/Use+Case+2%3A+ERA5+hourly+data+on+single+levels+from+1979+to+present).\n\nFor complete details, please refer to [How to acknowledge and cite a Climate Data Store (CDS) catalogue entry and the data published as part of it](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "ecmwf,era5,era5-pds,precipitation,reanalysis,temperature,weather", "license": "proprietary", "title": "ERA5 - PDS", "missionStartDate": "1979-01-01T00:00:00Z"}, "naip": {"abstract": "The [National Agriculture Imagery Program](https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/) (NAIP) provides U.S.-wide, high-resolution aerial imagery, with four spectral bands (R, G, B, IR). NAIP is administered by the [Aerial Field Photography Office](https://www.fsa.usda.gov/programs-and-services/aerial-photography/) (AFPO) within the [US Department of Agriculture](https://www.usda.gov/) (USDA). Data are captured at least once every three years for each state. This dataset represents NAIP data from 2010-present, in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "aerial,afpo,agriculture,imagery,naip,united-states,usda", "license": "proprietary", "title": "NAIP: National Agriculture Imagery Program", "missionStartDate": "2010-01-01T00:00:00Z"}, "chloris-biomass": {"abstract": "The Chloris Global Biomass 2003 - 2019 dataset provides estimates of stock and change in aboveground biomass for Earth's terrestrial woody vegetation ecosystems. It covers the period 2003 - 2019, at annual time steps. The global dataset has a circa 4.6 km spatial resolution.\n\nThe maps and data sets were generated by combining multiple remote sensing measurements from space borne satellites, processed using state-of-the-art machine learning and statistical methods, validated with field data from multiple countries. The dataset provides direct estimates of aboveground stock and change, and are not based on land use or land cover area change, and as such they include gains and losses of carbon stock in all types of woody vegetation - whether natural or plantations.\n\nAnnual stocks are expressed in units of tons of biomass. Annual changes in stocks are expressed in units of CO2 equivalent, i.e., the amount of CO2 released from or taken up by terrestrial ecosystems for that specific pixel.\n\nThe spatial data sets are available on [Microsoft\u2019s Planetary Computer](https://planetarycomputer.microsoft.com/dataset/chloris-biomass) under a Creative Common license of the type Attribution-Non Commercial-Share Alike [CC BY-NC-SA](https://spdx.org/licenses/CC-BY-NC-SA-4.0.html).\n\n[Chloris Geospatial](https://chloris.earth/) is a mission-driven technology company that develops software and data products on the state of natural capital for use by business, governments, and the social sector.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biomass,carbon,chloris,chloris-biomass,modis", "license": "CC-BY-NC-SA-4.0", "title": "Chloris Biomass", "missionStartDate": "2003-07-31T00:00:00Z"}, "kaza-hydroforecast": {"abstract": "This dataset is a daily updated set of HydroForecast seasonal river flow forecasts at six locations in the Kwando and Upper Zambezi river basins. More details about the locations, project context, and to interactively view current and previous forecasts, visit our [public website](https://dashboard.hydroforecast.com/public/wwf-kaza).\n\n## Flow forecast dataset and model description\n\n[HydroForecast](https://www.upstream.tech/hydroforecast) is a theory-guided machine learning hydrologic model that predicts streamflow in basins across the world. For the Kwando and Upper Zambezi, HydroForecast makes daily predictions of streamflow rates using a [seasonal analog approach](https://support.upstream.tech/article/125-seasonal-analog-model-a-technical-overview). The model's output is probabilistic and the mean, median and a range of quantiles are available at each forecast step.\n\nThe underlying model has the following attributes: \n\n* Timestep: 10 days\n* Horizon: 10 to 180 days \n* Update frequency: daily\n* Units: cubic meters per second (m\u00b3/s)\n \n## Site details\n\nThe model produces output for six locations in the Kwando and Upper Zambezi river basins.\n\n* Upper Zambezi sites\n * Zambezi at Chavuma\n * Luanginga at Kalabo\n* Kwando basin sites\n * Kwando at Kongola -- total basin flows\n * Kwando Sub-basin 1\n * Kwando Sub-basin 2 \n * Kwando Sub-basin 3\n * Kwando Sub-basin 4\n * Kwando Kongola Sub-basin\n\n## STAC metadata\n\nThere is one STAC item per location. Each STAC item has a single asset linking to a Parquet file in Azure Blob Storage.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "hydroforecast,hydrology,kaza-hydroforecast,streamflow,upstream-tech,water", "license": "CDLA-Sharing-1.0", "title": "HydroForecast - Kwando & Upper Zambezi Rivers", "missionStartDate": "2022-01-01T00:00:00Z"}, "planet-nicfi-analytic": {"abstract": "*Note: Assets in this collection are only available to winners of the [GEO-Microsoft Planetary Computer RFP](https://www.earthobservations.org/geo_blog_obs.php?id=528). Others wishing to use the data can sign up and access it from Planet at [https://www.planet.com/nicfi/](https://www.planet.com/nicfi/) and email [planetarycomputer@microsoft.com](mailto:planetarycomputer@microsoft.com).*\n\nThrough Norway\u2019s International Climate & Forests Initiative (NICFI), users can access Planet\u2019s high-resolution, analysis-ready mosaics of the world\u2019s tropics in order to help reduce and reverse the loss of tropical forests, combat climate change, conserve biodiversity, and facilitate sustainable development.\n\nIn support of NICFI\u2019s mission, you can use this data for a number of projects including, but not limited to:\n\n* Advance scientific research about the world\u2019s tropical forests and the critical services they provide.\n* Implement and improve policies for sustainable forest management and land use in developing tropical forest countries and jurisdictions.\n* Increase transparency and accountability in the tropics.\n* Protect and improve the rights of indigenous peoples and local communities in tropical forest countries.\n* Innovate solutions towards reducing pressure on forests from global commodities and financial markets.\n* In short, the primary purpose of the NICFI Program is to support reducing and reversing the loss of tropical forests, contributing to combating climate change, conserving biodiversity, contributing to forest regrowth, restoration, and enhancement, and facilitating sustainable development, all of which must be Non-Commercial Use.\n\nTo learn how more about the NICFI program, streaming and downloading basemaps please read the [NICFI Data Program User Guide](https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf).\n\nThis collection contains both monthly and biannual mosaics. Biannual mosaics are available from December 2015 - August 2020. Monthly mosaics are available from September 2020. The STAC items include a `planet-nicfi:cadence` field indicating the type of mosaic.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "imagery,nicfi,planet,planet-nicfi-analytic,satellite,tropics", "license": "proprietary", "title": "Planet-NICFI Basemaps (Analytic)", "missionStartDate": "2015-12-01T00:00:00Z"}, "modis-17A2H-061": {"abstract": "The Version 6.1 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter (m) pixel size based on the radiation use efficiency concept that can be potentially used as inputs to data models to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product includes information about GPP and Net Photosynthesis (PSN). The PSN band values are the GPP less the Maintenance Respiration (MR). The data product also contains a PSN Quality Control (QC) layer. The quality layer contains quality information for both the GPP and the PSN.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a2h,modis,modis-17a2h-061,myd17a2h,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Gross Primary Productivity 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-11A2-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity 8-Day Version 6.1 product provides an average 8-day per-pixel Land Surface Temperature and Emissivity (LST&E) with a 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. Each pixel value in the MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8-day period. The 8-day compositing period was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua platforms. Provided along with the daytime and nighttime surface temperature bands are associated quality control assessments, observation times, view zenith angles, and clear-sky coverages along with bands 31 and 32 emissivities from land cover types.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod11a2,modis,modis-11a2-061,myd11a2,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/Emissivity 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "daymet-daily-pr": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-pr,precipitation,puerto-rico,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily Puerto Rico", "missionStartDate": "1980-01-01T12:00:00Z"}, "3dep-lidar-dtm-native": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Terrain Model (DTM) using the vendor provided (native) ground classification and [`pdal.filters.range`](https://pdal.io/stages/filters.range.html#filters-range) to output a collection of Cloud Optimized GeoTIFFs, removing all points that have been classified as noise.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dtm-native,cog,dtm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Terrain Model (Native)", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-classification": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It uses the [ASPRS](https://www.asprs.org/) (American Society for Photogrammetry and Remote Sensing) [Lidar point classification](https://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/lidar-point-classification.htm). See [LAS specification](https://www.ogc.org/standards/LAS) for details.\n\nThis COG type is based on the Classification [PDAL dimension](https://pdal.io/dimensions.html) and uses [`pdal.filters.range`](https://pdal.io/stages/filters.range.html) to select a subset of interesting classifications. Do note that not all LiDAR collections contain a full compliment of classification labels.\nTo remove outliers, the PDAL pipeline uses a noise filter and then outputs the Classification dimension.\n\nThe STAC collection implements the [`item_assets`](https://github.com/stac-extensions/item-assets) and [`classification`](https://github.com/stac-extensions/classification) extensions. These classes are displayed in the \"Item assets\" below. You can programmatically access the full list of class values and descriptions using the `classification:classes` field form the `data` asset on the STAC collection.\n\nClassification rasters were produced as a subset of LiDAR classification categories:\n\n```\n0, Never Classified\n1, Unclassified\n2, Ground\n3, Low Vegetation\n4, Medium Vegetation\n5, High Vegetation\n6, Building\n9, Water\n10, Rail\n11, Road\n17, Bridge Deck\n```\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-classification,classification,cog,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Classification", "missionStartDate": "2012-01-01T00:00:00Z"}, "3dep-lidar-dtm": {"abstract": "This collection is derived from the [USGS 3DEP COPC collection](https://planetarycomputer.microsoft.com/dataset/3dep-lidar-copc). It creates a Digital Terrain Model (DTM) using [`pdal.filters.smrf`](https://pdal.io/stages/filters.smrf.html#filters-smrf) to output a collection of Cloud Optimized GeoTIFFs.\n\nThe Simple Morphological Filter (SMRF) classifies ground points based on the approach outlined in [Pingel2013](https://pdal.io/references.html#pingel2013).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "3dep,3dep-lidar-dtm,cog,dtm,usgs", "license": "proprietary", "title": "USGS 3DEP Lidar Digital Terrain Model", "missionStartDate": "2012-01-01T00:00:00Z"}, "gap": {"abstract": "The [USGS GAP/LANDFIRE National Terrestrial Ecosystems data](https://www.sciencebase.gov/catalog/item/573cc51be4b0dae0d5e4b0c5), based on the [NatureServe Terrestrial Ecological Systems](https://www.natureserve.org/products/terrestrial-ecological-systems-united-states), are the foundation of the most detailed, consistent map of vegetation available for the United States. These data facilitate planning and management for biological diversity on a regional and national scale.\n\nThis dataset includes the [land cover](https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/land-cover) component of the GAP/LANDFIRE project.\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "gap,land-cover,landfire,united-states,usgs", "license": "proprietary", "title": "USGS Gap Land Cover", "missionStartDate": "1999-01-01T00:00:00Z"}, "modis-17A2HGF-061": {"abstract": "The Version 6.1 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter (m) pixel size based on the radiation use efficiency concept that can be potentially used as inputs to data models to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product includes information about GPP and Net Photosynthesis (PSN). The PSN band values are the GPP less the Maintenance Respiration (MR). The data product also contains a PSN Quality Control (QC) layer. The quality layer contains quality information for both the GPP and the PSN. This product will be generated at the end of each year when the entire yearly 8-day 15A2H is available. Hence, the gap-filled A2HGF is the improved 17, which has cleaned the poor-quality inputs from 8-day Leaf Area Index and Fraction of Photosynthetically Active Radiation (FPAR/LAI) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a2hgf,modis,modis-17a2hgf-061,myd17a2hgf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Gross Primary Productivity 8-Day Gap-Filled", "missionStartDate": "2000-02-18T00:00:00Z"}, "planet-nicfi-visual": {"abstract": "*Note: Assets in this collection are only available to winners of the [GEO-Microsoft Planetary Computer RFP](https://www.earthobservations.org/geo_blog_obs.php?id=528). Others wishing to use the data can sign up and access it from Planet at [https://www.planet.com/nicfi/](https://www.planet.com/nicfi/) and email [planetarycomputer@microsoft.com](mailto:planetarycomputer@microsoft.com).*\n\nThrough Norway\u2019s International Climate & Forests Initiative (NICFI), users can access Planet\u2019s high-resolution, analysis-ready mosaics of the world\u2019s tropics in order to help reduce and reverse the loss of tropical forests, combat climate change, conserve biodiversity, and facilitate sustainable development.\n\nIn support of NICFI\u2019s mission, you can use this data for a number of projects including, but not limited to:\n\n* Advance scientific research about the world\u2019s tropical forests and the critical services they provide.\n* Implement and improve policies for sustainable forest management and land use in developing tropical forest countries and jurisdictions.\n* Increase transparency and accountability in the tropics.\n* Protect and improve the rights of indigenous peoples and local communities in tropical forest countries.\n* Innovate solutions towards reducing pressure on forests from global commodities and financial markets.\n* In short, the primary purpose of the NICFI Program is to support reducing and reversing the loss of tropical forests, contributing to combating climate change, conserving biodiversity, contributing to forest regrowth, restoration, and enhancement, and facilitating sustainable development, all of which must be Non-Commercial Use.\n\nTo learn how more about the NICFI program, streaming and downloading basemaps please read the [NICFI Data Program User Guide](https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf).\n\nThis collection contains both monthly and biannual mosaics. Biannual mosaics are available from December 2015 - August 2020. Monthly mosaics are available from September 2020. The STAC items include a `planet-nicfi:cadence` field indicating the type of mosaic.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "imagery,nicfi,planet,planet-nicfi-visual,satellite,tropics", "license": "proprietary", "title": "Planet-NICFI Basemaps (Visual)", "missionStartDate": "2015-12-01T00:00:00Z"}, "gbif": {"abstract": "The [Global Biodiversity Information Facility](https://www.gbif.org) (GBIF) is an international network and data infrastructure funded by the world's governments, providing global data that document the occurrence of species. GBIF currently integrates datasets documenting over 1.6 billion species occurrences.\n\nThe GBIF occurrence dataset combines data from a wide array of sources, including specimen-related data from natural history museums, observations from citizen science networks, and automated environmental surveys. While these data are constantly changing at [GBIF.org](https://www.gbif.org), periodic snapshots are taken and made available here. \n\nData are stored in [Parquet](https://parquet.apache.org/) format; the Parquet file schema is described below. Most field names correspond to [terms from the Darwin Core standard](https://dwc.tdwg.org/terms/), and have been interpreted by GBIF's systems to align taxonomy, location, dates, etc. Additional information may be retrieved using the [GBIF API](https://www.gbif.org/developer/summary).\n\nPlease refer to the GBIF [citation guidelines](https://www.gbif.org/citation-guidelines) for information about how to cite GBIF data in publications.. For analyses using the whole dataset, please use the following citation:\n\n> GBIF.org ([Date]) GBIF Occurrence Data [DOI of dataset]\n\nFor analyses where data are significantly filtered, please track the datasetKeys used and use a \"[derived dataset](https://www.gbif.org/citation-guidelines#derivedDatasets)\" record for citing the data.\n\nThe [GBIF data blog](https://data-blog.gbif.org/categories/gbif/) contains a number of articles that can help you analyze GBIF data.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biodiversity,gbif,species", "license": "proprietary", "title": "Global Biodiversity Information Facility (GBIF)", "missionStartDate": "2021-04-13T00:00:00Z"}, "modis-17A3HGF-061": {"abstract": "The Version 6.1 product provides information about annual Net Primary Production (NPP) at 500 meter (m) pixel resolution. Annual Moderate Resolution Imaging Spectroradiometer (MODIS) NPP is derived from the sum of all 8-day Net Photosynthesis (PSN) products (MOD17A2H) from the given year. The PSN value is the difference of the Gross Primary Productivity (GPP) and the Maintenance Respiration (MR). The product will be generated at the end of each year when the entire yearly 8-day 15A2H is available. Hence, the gap-filled product is the improved 17, which has cleaned the poor-quality inputs from 8-day Leaf Area Index and Fraction of Photosynthetically Active Radiation (LAI/FPAR) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod17a3hgf,modis,modis-17a3hgf-061,myd17a3hgf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Net Primary Production Yearly Gap-Filled", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-09A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) 09A1 Version 6.1 product provides an estimate of the surface spectral reflectance of MODIS Bands 1 through 7 corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven 500 meter (m) reflectance bands are two quality layers and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mod09a1,modis,modis-09a1-061,myd09a1,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Surface Reflectance 8-Day (500m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "alos-dem": {"abstract": "The \"ALOS World 3D-30m\" (AW3D30) dataset is a 30 meter resolution global digital surface model (DSM), developed by the Japan Aerospace Exploration Agency (JAXA). AWD30 was constructed from the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) on board Advanced Land Observing Satellite (ALOS), operated from 2006 to 2011.\n\nSee the [Product Description](https://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v3.2_product_e_e1.2.pdf) for more details.\n", "instrument": "prism", "platform": null, "platformSerialIdentifier": "alos", "processingLevel": null, "keywords": "alos,alos-dem,dem,dsm,elevation,jaxa,prism", "license": "proprietary", "title": "ALOS World 3D-30m", "missionStartDate": "2016-12-07T00:00:00Z"}, "alos-palsar-mosaic": {"abstract": "Global 25 m Resolution PALSAR-2/PALSAR Mosaic (MOS)", "instrument": "PALSAR,PALSAR-2", "platform": null, "platformSerialIdentifier": "ALOS,ALOS-2", "processingLevel": null, "keywords": "alos,alos-2,alos-palsar-mosaic,global,jaxa,palsar,palsar-2,remote-sensing", "license": "proprietary", "title": "ALOS PALSAR Annual Mosaic", "missionStartDate": "2015-01-01T00:00:00Z"}, "deltares-water-availability": {"abstract": "[Deltares](https://www.deltares.nl/en/) has produced a hydrological model approach to simulate historical daily reservoir variations for 3,236 locations across the globe for the period 1970-2020 using the distributed [wflow_sbm](https://deltares.github.io/Wflow.jl/stable/model_docs/model_configurations/) model. The model outputs long-term daily information on reservoir volume, inflow and outflow dynamics, as well as information on upstream hydrological forcing.\n\nThey hydrological model was forced with 5 different precipitation products. Two products (ERA5 and CHIRPS) are available at the global scale, while for Europe, USA and Australia a regional product was use (i.e. EOBS, NLDAS and BOM, respectively). Using these different precipitation products, it becomes possible to assess the impact of uncertainty in the model forcing. A different number of basins upstream of reservoirs are simulated, given the spatial coverage of each precipitation product.\n\nSee the complete [methodology documentation](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/pc-deltares-water-availability-documentation.pdf) for more information.\n\n## Dataset coverages\n\n| Name | Scale | Period | Number of basins |\n|--------|--------------------------|-----------|------------------|\n| ERA5 | Global | 1967-2020 | 3236 |\n| CHIRPS | Global (+/- 50 latitude) | 1981-2020 | 2951 |\n| EOBS | Europe/North Africa | 1979-2020 | 682 |\n| NLDAS | USA | 1979-2020 | 1090 |\n| BOM | Australia | 1979-2020 | 116 |\n\n## STAC Metadata\n\nThis STAC collection includes one STAC item per dataset. The item includes a `deltares:reservoir` property that can be used to query for the URL of a specific dataset.\n\n## Contact\n\nFor questions about this dataset, contact [`aiforearthdatasets@microsoft.com`](mailto:aiforearthdatasets@microsoft.com?subject=deltares-floods%20question).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "deltares,deltares-water-availability,precipitation,reservoir,water,water-availability", "license": "CDLA-Permissive-1.0", "title": "Deltares Global Water Availability", "missionStartDate": "1970-01-01T00:00:00Z"}, "modis-16A3GF-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16A3GF Version 6.1 Evapotranspiration/Latent Heat Flux (ET/LE) product is a year-end gap-filled yearly composite dataset produced at 500 meter (m) pixel resolution. The algorithm used for the MOD16 data product collection is based on the logic of the Penman-Monteith equation, which includes inputs of daily meteorological reanalysis data along with MODIS remotely sensed data products such as vegetation property dynamics, albedo, and land cover. The product will be generated at the end of each year when the entire yearly 8-day MOD15A2H/MYD15A2H is available. Hence, the gap-filled product is the improved 16, which has cleaned the poor-quality inputs from yearly Leaf Area Index and Fraction of Photosynthetically Active Radiation (LAI/FPAR) based on the Quality Control (QC) label for every pixel. If any LAI/FPAR pixel did not meet the quality screening criteria, its value is determined through linear interpolation. However, users cannot get this product in near-real time because it will be generated only at the end of a given year. Provided in the product are layers for composited ET, LE, Potential ET (PET), and Potential LE (PLE) along with a quality control layer. Two low resolution browse images, ET and LE, are also available for each granule. The pixel values for the two Evapotranspiration layers (ET and PET) are the sum for all days within the defined year, and the pixel values for the two Latent Heat layers (LE and PLE) are the average of all days within the defined year.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod16a3gf,modis,modis-16a3gf-061,myd16a3gf,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Net Evapotranspiration Yearly Gap-Filled", "missionStartDate": "2001-01-01T00:00:00Z"}, "modis-21A2-061": {"abstract": "A suite of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity (LST&E) products are available in Collection 6.1. The MOD21 Land Surface Temperatuer (LST) algorithm differs from the algorithm of the MOD11 LST products, in that the MOD21 algorithm is based on the ASTER Temperature/Emissivity Separation (TES) technique, whereas the MOD11 uses the split-window technique. The MOD21 TES algorithm uses a physics-based algorithm to dynamically retrieve both the LST and spectral emissivity simultaneously from the MODIS thermal infrared bands 29, 31, and 32. The TES algorithm is combined with an improved Water Vapor Scaling (WVS) atmospheric correction scheme to stabilize the retrieval during very warm and humid conditions. This dataset is an 8-day composite LST product at 1,000 meter spatial resolution that uses an algorithm based on a simple averaging method. The algorithm calculates the average from all the cloud free 21A1D and 21A1N daily acquisitions from the 8-day period. Unlike the 21A1 data sets where the daytime and nighttime acquisitions are separate products, the 21A2 contains both daytime and nighttime acquisitions as separate Science Dataset (SDS) layers within a single Hierarchical Data Format (HDF) file. The LST, Quality Control (QC), view zenith angle, and viewing time have separate day and night SDS layers, while the values for the MODIS emissivity bands 29, 31, and 32 are the average of both the nighttime and daytime acquisitions. Additional details regarding the method used to create this Level 3 (L3) product are available in the Algorithm Theoretical Basis Document (ATBD).", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod21a2,modis,modis-21a2-061,myd21a2,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/3-Band Emissivity 8-Day", "missionStartDate": "2000-02-16T00:00:00Z"}, "us-census": {"abstract": "The [2020 Census](https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-main.html) counted every person living in the United States and the five U.S. territories. It marked the 24th census in U.S. history and the first time that households were invited to respond to the census online.\n\nThe tables included on the Planetary Computer provide information on population and geographic boundaries at various levels of cartographic aggregation.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "administrative-boundaries,demographics,population,us-census,us-census-bureau", "license": "proprietary", "title": "US Census", "missionStartDate": "2021-08-01T00:00:00Z"}, "jrc-gsw": {"abstract": "Global surface water products from the European Commission Joint Research Centre, based on Landsat 5, 7, and 8 imagery. Layers in this collection describe the occurrence, change, and seasonality of surface water from 1984-2020. Complete documentation for each layer is available in the [Data Users Guide](https://storage.cloud.google.com/global-surface-water/downloads_ancillary/DataUsersGuidev2020.pdf).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,jrc-gsw,landsat,water", "license": "proprietary", "title": "JRC Global Surface Water", "missionStartDate": "1984-03-01T00:00:00Z"}, "deltares-floods": {"abstract": "[Deltares](https://www.deltares.nl/en/) has produced inundation maps of flood depth using a model that takes into account water level attenuation and is forced by sea level. At the coastline, the model is forced by extreme water levels containing surge and tide from GTSMip6. The water level at the coastline is extended landwards to all areas that are hydrodynamically connected to the coast following a \u2018bathtub\u2019 like approach and calculates the flood depth as the difference between the water level and the topography. Unlike a simple 'bathtub' model, this model attenuates the water level over land with a maximum attenuation factor of 0.5\u2009m\u2009km-1. The attenuation factor simulates the dampening of the flood levels due to the roughness over land.\n\nIn its current version, the model does not account for varying roughness over land and permanent water bodies such as rivers and lakes, and it does not account for the compound effects of waves, rainfall, and river discharge on coastal flooding. It also does not include the mitigating effect of coastal flood protection. Flood extents must thus be interpreted as the area that is potentially exposed to flooding without coastal protection.\n\nSee the complete [methodology documentation](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/11206409-003-ZWS-0003_v0.1-Planetary-Computer-Deltares-global-flood-docs.pdf) for more information.\n\n## Digital elevation models (DEMs)\n\nThis documentation will refer to three DEMs:\n\n* `NASADEM` is the SRTM-derived [NASADEM](https://planetarycomputer.microsoft.com/dataset/nasadem) product.\n* `MERITDEM` is the [Multi-Error-Removed Improved Terrain DEM](http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/), derived from SRTM and AW3D.\n* `LIDAR` is the [Global LiDAR Lowland DTM (GLL_DTM_v1)](https://data.mendeley.com/datasets/v5x4vpnzds/1).\n\n## Global datasets\n\nThis collection includes multiple global flood datasets derived from three different DEMs (`NASA`, `MERIT`, and `LIDAR`) and at different resolutions. Not all DEMs have all resolutions:\n\n* `NASADEM` and `MERITDEM` are available at `90m` and `1km` resolutions\n* `LIDAR` is available at `5km` resolution\n\n## Historic event datasets\n\nThis collection also includes historical storm event data files that follow similar DEM and resolution conventions. Not all storms events are available for each DEM and resolution combination, but generally follow the format of:\n\n`events/[DEM]_[resolution]-wm_final/[storm_name]_[event_year]_masked.nc`\n\nFor example, a flood map for the MERITDEM-derived 90m flood data for the \"Omar\" storm in 2008 is available at:\n\n\n\n## Contact\n\nFor questions about this dataset, contact [`aiforearthdatasets@microsoft.com`](mailto:aiforearthdatasets@microsoft.com?subject=deltares-floods%20question).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "deltares,deltares-floods,flood,global,sea-level-rise,water", "license": "CDLA-Permissive-1.0", "title": "Deltares Global Flood Maps", "missionStartDate": "2018-01-01T00:00:00Z"}, "modis-43A4-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 Version 6.1 Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset is produced daily using 16 days of Terra and Aqua MODIS data at 500 meter (m) resolution. The view angle effects are removed from the directional reflectances, resulting in a stable and consistent NBAR product. Data are temporally weighted to the ninth day which is reflected in the Julian date in the file name. Users are urged to use the band specific quality flags to isolate the highest quality full inversion results for their own science applications as described in the User Guide. The MCD43A4 provides NBAR and simplified mandatory quality layers for MODIS bands 1 through 7. Essential quality information provided in the corresponding MCD43A2 data file should be consulted when using this product.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mcd43a4,modis,modis-43a4-061,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Nadir BRDF-Adjusted Reflectance (NBAR) Daily", "missionStartDate": "2000-02-16T00:00:00Z"}, "modis-09Q1-061": {"abstract": "The 09Q1 Version 6.1 product provides an estimate of the surface spectral reflectance of Moderate Resolution Imaging Spectroradiometer (MODIS) Bands 1 and 2, corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Provided along with the 250 meter (m) surface reflectance bands are two quality layers. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,imagery,mod09q1,modis,modis-09q1-061,myd09q1,nasa,reflectance,satellite,terra", "license": "proprietary", "title": "MODIS Surface Reflectance 8-Day (250m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-14A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies and Fire Daily Version 6.1 data are generated every eight days at 1 kilometer (km) spatial resolution as a Level 3 product. MOD14A1 contains eight consecutive days of fire data conveniently packaged into a single file. The Science Dataset (SDS) layers include the fire mask, pixel quality indicators, maximum fire radiative power (MaxFRP), and the position of the fire pixel within the scan. Each layer consists of daily per pixel information for each of the eight days of data acquisition.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,mod14a1,modis,modis-14a1-061,myd14a1,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Thermal Anomalies/Fire Daily", "missionStartDate": "2000-02-18T00:00:00Z"}, "hrea": {"abstract": "The [HREA](http://www-personal.umich.edu/~brianmin/HREA/index.html) project aims to provide open access to new indicators of electricity access and reliability across the world. Leveraging satellite imagery with computational methods, these high-resolution data provide new tools to track progress toward reliable and sustainable energy access across the world.\n\nThis dataset includes settlement-level measures of electricity access, reliability, and usage for 89 nations, derived from nightly VIIRS satellite imagery. Specifically, this dataset provides the following annual values at country-level granularity:\n\n1. **Access**: Predicted likelihood that a settlement is electrified, based on night-by-night comparisons of each settlement against matched uninhabited areas over a calendar year.\n\n2. **Reliability**: Proportion of nights a settlement is statistically brighter than matched uninhabited areas. Areas with more frequent power outages or service interruptions have lower rates.\n\n3. **Usage**: Higher levels of brightness indicate more robust usage of outdoor lighting, which is highly correlated with overall energy consumption.\n\n4. **Nighttime Lights**: Annual composites of VIIRS nighttime light output.\n\nFor more information and methodology, please visit the [HREA website](http://www-personal.umich.edu/~brianmin/HREA/index.html).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "electricity,hrea,viirs", "license": "CC-BY-4.0", "title": "HREA: High Resolution Electricity Access", "missionStartDate": "2012-12-31T00:00:00Z"}, "modis-13Q1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices Version 6.1 data are generated every 16 days at 250 meter (m) spatial resolution as a Level 3 product. The MOD13Q1 product provides two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI) which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI), which has improved sensitivity over high biomass regions. The algorithm chooses the best available pixel value from all the acquisitions from the 16 day period. The criteria used is low clouds, low view angle, and the highest NDVI/EVI value. Along with the vegetation layers and the two quality layers, the HDF file will have MODIS reflectance bands 1 (red), 2 (near-infrared), 3 (blue), and 7 (mid-infrared), as well as four observation layers.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod13q1,modis,modis-13q1-061,myd13q1,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Vegetation Indices 16-Day (250m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-14A2-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies and Fire 8-Day Version 6.1 data are generated at 1 kilometer (km) spatial resolution as a Level 3 product. The MOD14A2 gridded composite contains the maximum value of the individual fire pixel classes detected during the eight days of acquisition. The Science Dataset (SDS) layers include the fire mask and pixel quality indicators.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,fire,global,mod14a2,modis,modis-14a2-061,myd14a2,nasa,satellite,terra", "license": "proprietary", "title": "MODIS Thermal Anomalies/Fire 8-Day", "missionStartDate": "2000-02-18T00:00:00Z"}, "sentinel-2-l2a": {"abstract": "The [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) program provides global imagery in thirteen spectral bands at 10m-60m resolution and a revisit time of approximately five days. This dataset represents the global Sentinel-2 archive, from 2016 to the present, processed to L2A (bottom-of-atmosphere) using [Sen2Cor](https://step.esa.int/main/snap-supported-plugins/sen2cor/) and converted to [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": "msi", "platform": "sentinel-2", "platformSerialIdentifier": "Sentinel-2A,Sentinel-2B", "processingLevel": null, "keywords": "copernicus,esa,global,imagery,msi,reflectance,satellite,sentinel,sentinel-2,sentinel-2-l2a,sentinel-2a,sentinel-2b", "license": "proprietary", "title": "Sentinel-2 Level-2A", "missionStartDate": "2015-06-27T10:25:31Z"}, "modis-15A2H-061": {"abstract": "The Version 6.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4, Combined Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) product is an 8-day composite dataset with 500 meter pixel size. The algorithm chooses the best pixel available from within the 8-day period. LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the green elements of a vegetation canopy.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mcd15a2h,mod15a2h,modis,modis-15a2h-061,myd15a2h,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Leaf Area Index/FPAR 8-Day", "missionStartDate": "2002-07-04T00:00:00Z"}, "modis-11A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity Daily Version 6.1 product provides daily per-pixel Land Surface Temperature and Emissivity (LST&E) with 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. The pixel temperature value is derived from the MOD11_L2 swath product. Above 30 degrees latitude, some pixels may have multiple observations where the criteria for clear-sky are met. When this occurs, the pixel value is a result of the average of all qualifying observations. Provided along with the daytime and nighttime surface temperature bands are associated quality control assessments, observation times, view zenith angles, and clear-sky coverages along with bands 31 and 32 emissivities from land cover types", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod11a1,modis,modis-11a1-061,myd11a1,nasa,satellite,temperature,terra", "license": "proprietary", "title": "MODIS Land Surface Temperature/Emissivity Daily", "missionStartDate": "2000-02-24T00:00:00Z"}, "modis-15A3H-061": {"abstract": "The MCD15A3H Version 6.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4, Combined Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) product is a 4-day composite data set with 500 meter pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA's Terra and Aqua satellites from within the 4-day period. LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous canopies. FPAR is defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the green elements of a vegetation canopy.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mcd15a3h,modis,modis-15a3h-061,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Leaf Area Index/FPAR 4-Day", "missionStartDate": "2002-07-04T00:00:00Z"}, "modis-10A2-061": {"abstract": "This global Level-3 (L3) data set provides the maximum snow cover extent observed over an eight-day period within 10degx10deg MODIS sinusoidal grid tiles. Tiles are generated by compositing 500 m observations from the 'MODIS Snow Cover Daily L3 Global 500m Grid' data set. A bit flag index is used to track the eight-day snow/no-snow chronology for each 500 m cell.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod10a2,modis,modis-10a2-061,myd10a2,nasa,satellite,snow,terra", "license": "proprietary", "title": "MODIS Snow Cover 8-day", "missionStartDate": "2000-02-18T00:00:00Z"}, "modis-10A1-061": {"abstract": "This global Level-3 (L3) data set provides a daily composite of snow cover and albedo derived from the 'MODIS Snow Cover 5-Min L2 Swath 500m' data set. Each data granule is a 10degx10deg tile projected to a 500 m sinusoidal grid.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod10a1,modis,modis-10a1-061,myd10a1,nasa,satellite,snow,terra", "license": "proprietary", "title": "MODIS Snow Cover Daily", "missionStartDate": "2000-02-24T00:00:00Z"}, "modis-13A1-061": {"abstract": "The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 16-Day Version 6.1 product provides Vegetation Index (VI) values at a per pixel basis at 500 meter (m) spatial resolution. There are two primary vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI), which is referred to as the continuity index to the existing National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR) derived NDVI. The second vegetation layer is the Enhanced Vegetation Index (EVI), which has improved sensitivity over high biomass regions. The algorithm for this product chooses the best available pixel value from all the acquisitions from the 16 day period. The criteria used is low clouds, low view angle, and the highest NDVI/EVI value. Provided along with the vegetation layers and two quality assurance (QA) layers are reflectance bands 1 (red), 2 (near-infrared), 3 (blue), and 7 (mid-infrared), as well as four observation layers.", "instrument": "modis", "platform": null, "platformSerialIdentifier": "aqua,terra", "processingLevel": null, "keywords": "aqua,global,mod13a1,modis,modis-13a1-061,myd13a1,nasa,satellite,terra,vegetation", "license": "proprietary", "title": "MODIS Vegetation Indices 16-Day (500m)", "missionStartDate": "2000-02-18T00:00:00Z"}, "daymet-daily-na": {"abstract": "Gridded estimates of daily weather parameters. [Daymet](https://daymet.ornl.gov) Version 4 variables include the following parameters: minimum temperature, maximum temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length.\n\n[Daymet](https://daymet.ornl.gov/) provides measurements of near-surface meteorological conditions; the main purpose is to provide data estimates where no instrumentation exists. The dataset covers the period from January 1, 1980 to the present. Each year is processed individually at the close of a calendar year. Data are in a Lambert conformal conic projection for North America and are distributed in Zarr and NetCDF formats, compliant with the [Climate and Forecast (CF) metadata conventions (version 1.6)](http://cfconventions.org/).\n\nUse the DOI at [https://doi.org/10.3334/ORNLDAAC/1840](https://doi.org/10.3334/ORNLDAAC/1840) to cite your usage of the data.\n\nThis dataset provides coverage for Hawaii; North America and Puerto Rico are provided in [separate datasets](https://planetarycomputer.microsoft.com/dataset/group/daymet#daily).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "daymet,daymet-daily-na,north-america,precipitation,temperature,vapor-pressure,weather", "license": "proprietary", "title": "Daymet Daily North America", "missionStartDate": "1980-01-01T12:00:00Z"}, "nrcan-landcover": {"abstract": "Collection of Land Cover products for Canada as produced by Natural Resources Canada using Landsat satellite imagery. This collection of cartographic products offers classified Land Cover of Canada at a 30 metre scale, updated on a 5 year basis.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "canada,land-cover,landsat,north-america,nrcan-landcover,remote-sensing", "license": "OGL-Canada-2.0", "title": "Land Cover of Canada", "missionStartDate": "2015-01-01T00:00:00Z"}, "ecmwf-forecast": {"abstract": "The [ECMWF catalog of real-time products](https://www.ecmwf.int/en/forecasts/datasets/catalogue-ecmwf-real-time-products) offers real-time meterological and oceanographic productions from the ECMWF forecast system. Users should consult the [ECMWF Forecast User Guide](https://confluence.ecmwf.int/display/FUG/1+Introduction) for detailed information on each of the products.\n\n## Overview of products\n\nThe following diagram shows the publishing schedule of the various products.\n\n\n\nThe vertical axis shows the various products, defined below, which are grouped by combinations of `stream`, `forecast type`, and `reference time`. The horizontal axis shows *forecast times* in 3-hour intervals out from the reference time. A black square over a particular forecast time, or step, indicates that a forecast is made for that forecast time, for that particular `stream`, `forecast type`, `reference time` combination.\n\n* **stream** is the forecasting system that produced the data. The values are available in the `ecmwf:stream` summary of the STAC collection. They are:\n * `enfo`: [ensemble forecast](https://confluence.ecmwf.int/display/FUG/ENS+-+Ensemble+Forecasts), atmospheric fields\n * `mmsf`: [multi-model seasonal forecasts](https://confluence.ecmwf.int/display/FUG/Long-Range+%28Seasonal%29+Forecast) fields from the ECMWF model only.\n * `oper`: [high-resolution forecast](https://confluence.ecmwf.int/display/FUG/HRES+-+High-Resolution+Forecast), atmospheric fields \n * `scda`: short cut-off high-resolution forecast, atmospheric fields (also known as \"high-frequency products\")\n * `scwv`: short cut-off high-resolution forecast, ocean wave fields (also known as \"high-frequency products\") and\n * `waef`: [ensemble forecast](https://confluence.ecmwf.int/display/FUG/ENS+-+Ensemble+Forecasts), ocean wave fields,\n * `wave`: wave model\n* **type** is the forecast type. The values are available in the `ecmwf:type` summary of the STAC collection. They are:\n * `fc`: forecast\n * `ef`: ensemble forecast\n * `pf`: ensemble probabilities\n * `tf`: trajectory forecast for tropical cyclone tracks\n* **reference time** is the hours after midnight when the model was run. Each stream / type will produce assets for different forecast times (steps from the reference datetime) depending on the reference time.\n\nVisit the [ECMWF's User Guide](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time) for more details on each of the various products.\n\nAssets are available for the previous 30 days.\n\n## Asset overview\n\nThe data are provided as [GRIB2 files](https://confluence.ecmwf.int/display/CKB/What+are+GRIB+files+and+how+can+I+read+them).\nAdditionally, [index files](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time#ECMWFOpenDataRealTime-IndexFilesIndexfiles) are provided, which can be used to read subsets of the data from Azure Blob Storage.\n\nWithin each `stream`, `forecast type`, `reference time`, the structure of the data are mostly consistent. Each GRIB2 file will have the\nsame data variables, coordinates (aside from `time` as the *reference time* changes and `step` as the *forecast time* changes). The exception\nis the `enfo-ep` and `waef-ep` products, which have more `step`s in the 240-hour forecast than in the 360-hour forecast. \n\nSee the example notebook for more on how to access the data.\n\n## STAC metadata\n\nThe Planetary Computer provides a single STAC item per GRIB2 file. Each GRIB2 file is global in extent, so every item has the same\n`bbox` and `geometry`.\n\nA few custom properties are available on each STAC item, which can be used in searches to narrow down the data to items of interest:\n\n* `ecmwf:stream`: The forecasting system (see above for definitions). The full set of values is available in the Collection's summaries.\n* `ecmwf:type`: The forecast type (see above for definitions). The full set of values is available in the Collection's summaries.\n* `ecmwf:step`: The offset from the reference datetime, expressed as ``, for example `\"3h\"` means \"3 hours from the reference datetime\". \n* `ecmwf:reference_datetime`: The datetime when the model was run. This indicates when the forecast *was made*, rather than when it's valid for.\n* `ecmwf:forecast_datetime`: The datetime for which the forecast is valid. This is also set as the item's `datetime`.\n\nSee the example notebook for more on how to use the STAC metadata to query for particular data.\n\n## Attribution\n\nThe products listed and described on this page are available to the public and their use is governed by the [Creative Commons CC-4.0-BY license and the ECMWF Terms of Use](https://apps.ecmwf.int/datasets/licences/general/). This means that the data may be redistributed and used commercially, subject to appropriate attribution.\n\nThe following wording should be attached to the use of this ECMWF dataset: \n\n1. Copyright statement: Copyright \"\u00a9 [year] European Centre for Medium-Range Weather Forecasts (ECMWF)\".\n2. Source [www.ecmwf.int](http://www.ecmwf.int/)\n3. License Statement: This data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0). [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)\n4. Disclaimer: ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.\n5. Where applicable, an indication if the material has been modified and an indication of previous modifications.\n\nThe following wording shall be attached to services created with this ECMWF dataset:\n\n1. Copyright statement: Copyright \"This service is based on data and products of the European Centre for Medium-Range Weather Forecasts (ECMWF)\".\n2. Source www.ecmwf.int\n3. License Statement: This ECMWF data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0). [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)\n4. Disclaimer: ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.\n5. Where applicable, an indication if the material has been modified and an indication of previous modifications\n\n## More information\n\nFor more, see the [ECMWF's User Guide](https://confluence.ecmwf.int/display/UDOC/ECMWF+Open+Data+-+Real+Time) and [example notebooks](https://github.com/ecmwf/notebook-examples/tree/master/opencharts).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "ecmwf,ecmwf-forecast,forecast,weather", "license": "CC-BY-4.0", "title": "ECMWF Open Data (real-time)", "missionStartDate": null}, "noaa-mrms-qpe-24h-pass2": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **24-Hour Pass 2** sub-product, i.e., 24-hour cumulative precipitation accumulation with a 2-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-24h-pass2,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 24-Hour Pass 2", "missionStartDate": "2022-07-21T20:00:00Z"}, "sentinel-1-grd": {"abstract": "The [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) mission is a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging. The Level-1 Ground Range Detected (GRD) products in this Collection consist of focused SAR data that has been detected, multi-looked and projected to ground range using the Earth ellipsoid model WGS84. The ellipsoid projection of the GRD products is corrected using the terrain height specified in the product general annotation. The terrain height used varies in azimuth but is constant in range (but can be different for each IW/EW sub-swath).\n\nGround range coordinates are the slant range coordinates projected onto the ellipsoid of the Earth. Pixel values represent detected amplitude. Phase information is lost. The resulting product has approximately square resolution pixels and square pixel spacing with reduced speckle at a cost of reduced spatial resolution.\n\nFor the IW and EW GRD products, multi-looking is performed on each burst individually. All bursts in all sub-swaths are then seamlessly merged to form a single, contiguous, ground range, detected image per polarization.\n\nFor more information see the [ESA documentation](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1)\n\n### Terrain Correction\n\nUsers might want to geometrically or radiometrically terrain correct the Sentinel-1 GRD data from this collection. The [Sentinel-1-RTC Collection](https://planetarycomputer.microsoft.com/dataset/sentinel-1-rtc) collection is a global radiometrically terrain corrected dataset derived from Sentinel-1 GRD. Additionally, users can terrain-correct on the fly using [any DEM available on the Planetary Computer](https://planetarycomputer.microsoft.com/catalog?tags=DEM). See [Customizable radiometric terrain correction](https://planetarycomputer.microsoft.com/docs/tutorials/customizable-rtc-sentinel1/) for more.", "instrument": null, "platform": "Sentinel-1", "platformSerialIdentifier": "SENTINEL-1A,SENTINEL-1B", "processingLevel": null, "keywords": "c-band,copernicus,esa,grd,sar,sentinel,sentinel-1,sentinel-1-grd,sentinel-1a,sentinel-1b", "license": "proprietary", "title": "Sentinel 1 Level-1 Ground Range Detected (GRD)", "missionStartDate": "2014-10-10T00:28:21Z"}, "nasadem": {"abstract": "[NASADEM](https://earthdata.nasa.gov/esds/competitive-programs/measures/nasadem) provides global topographic data at 1 arc-second (~30m) horizontal resolution, derived primarily from data captured via the [Shuttle Radar Topography Mission](https://www2.jpl.nasa.gov/srtm/) (SRTM).\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "dem,elevation,jpl,nasa,nasadem,nga,srtm,usgs", "license": "proprietary", "title": "NASADEM HGT v001", "missionStartDate": "2000-02-20T00:00:00Z"}, "io-lulc": {"abstract": "__Note__: _A new version of this item is available for your use. This mature version of the map remains available for use in existing applications. This item will be retired in December 2024. There is 2020 data available in the newer [9-class dataset](https://planetarycomputer.microsoft.com/dataset/io-lulc-9-class)._\n\nGlobal estimates of 10-class land use/land cover (LULC) for 2020, derived from ESA Sentinel-2 imagery at 10m resolution. This dataset was generated by [Impact Observatory](http://impactobservatory.com/), who used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. The global map was produced by applying this model to the relevant yearly Sentinel-2 scenes on the Planetary Computer.\n\nThis dataset is also available on the [ArcGIS Living Atlas of the World](https://livingatlas.arcgis.com/landcover/).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "global,io-lulc,land-cover,land-use,sentinel", "license": "CC-BY-4.0", "title": "Esri 10-Meter Land Cover (10-class)", "missionStartDate": "2017-01-01T00:00:00Z"}, "landsat-c2-l1": {"abstract": "Landsat Collection 2 Level-1 data, consisting of quantized and calibrated scaled Digital Numbers (DN) representing the multispectral image data. These [Level-1](https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data) data can be [rescaled](https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product) to top of atmosphere (TOA) reflectance and/or radiance. Thermal band data can be rescaled to TOA brightness temperature.\n\nThis dataset represents the global archive of Level-1 data from [Landsat Collection 2](https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2) acquired by the [Multispectral Scanner System](https://landsat.gsfc.nasa.gov/multispectral-scanner-system/) onboard Landsat 1 through Landsat 5 from July 7, 1972 to January 7, 2013. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "mss", "platform": null, "platformSerialIdentifier": "landsat-1,landsat-2,landsat-3,landsat-4,landsat-5", "processingLevel": null, "keywords": "global,imagery,landsat,landsat-1,landsat-2,landsat-3,landsat-4,landsat-5,landsat-c2-l1,mss,nasa,satellite,usgs", "license": "proprietary", "title": "Landsat Collection 2 Level-1", "missionStartDate": "1972-07-25T00:00:00Z"}, "drcog-lulc": {"abstract": "The [Denver Regional Council of Governments (DRCOG) Land Use/Land Cover (LULC)](https://drcog.org/services-and-resources/data-maps-and-modeling/regional-land-use-land-cover-project) datasets are developed in partnership with the [Babbit Center for Land and Water Policy](https://www.lincolninst.edu/our-work/babbitt-center-land-water-policy) and the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/)'s Conservation Innovation Center (CIC). DRCOG LULC includes 2018 data at 3.28ft (1m) resolution covering 1,000 square miles and 2020 data at 1ft resolution covering 6,000 square miles of the Denver, Colorado region. The classification data is derived from the USDA's 1m National Agricultural Imagery Program (NAIP) aerial imagery and leaf-off aerial ortho-imagery captured as part of the [Denver Regional Aerial Photography Project](https://drcog.org/services-and-resources/data-maps-and-modeling/denver-regional-aerial-photography-project) (6in resolution everywhere except the mountainous regions to the west, which are 1ft resolution).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "drcog-lulc,land-cover,land-use,naip,usda", "license": "proprietary", "title": "Denver Regional Council of Governments Land Use Land Cover", "missionStartDate": "2018-01-01T00:00:00Z"}, "chesapeake-lc-7": {"abstract": "A high-resolution 1-meter [land cover data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) in raster format for the entire Chesapeake Bay watershed based on 2013-2014 imagery from the National Agriculture Imagery Program (NAIP). The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions, that leads and directs Chesapeake Bay restoration efforts. \n\nThe dataset is composed of a uniform set of 7 land cover classes. Additional information is available in a [User Guide](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/06/Chesapeake_Conservancy_LandCover101Guide_June2020.pdf). Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lc-7,land-cover", "license": "proprietary", "title": "Chesapeake Land Cover (7-class)", "missionStartDate": "2013-01-01T00:00:00Z"}, "chesapeake-lc-13": {"abstract": "A high-resolution 1-meter [land cover data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) in raster format for the entire Chesapeake Bay watershed based on 2013-2014 imagery from the National Agriculture Imagery Program (NAIP). The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions, that leads and directs Chesapeake Bay restoration efforts. \n\nThe dataset is composed of 13 land cover classes, although not all classes are used in all areas. Additional information is available in a [User Guide](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/06/Chesapeake_Conservancy_LandCover101Guide_June2020.pdf) and [Class Description](https://www.chesapeakeconservancy.org/wp-content/uploads/2020/03/LC_Class_Descriptions.pdf) document. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lc-13,land-cover", "license": "proprietary", "title": "Chesapeake Land Cover (13-class)", "missionStartDate": "2013-01-01T00:00:00Z"}, "chesapeake-lu": {"abstract": "A high-resolution 1-meter [land use data product](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-use-data-project/) in raster format for the entire Chesapeake Bay watershed. The dataset was created by modifying the 2013-2014 high-resolution [land cover dataset](https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/) using 13 ancillary datasets including data on zoning, land use, parcel boundaries, landfills, floodplains, and wetlands. The product area encompasses over 250,000 square kilometers in New York, Pennsylvania, Maryland, Delaware, West Virginia, Virginia, and the District of Columbia. The dataset was created by the [Chesapeake Conservancy](https://www.chesapeakeconservancy.org/) [Conservation Innovation Center](https://www.chesapeakeconservancy.org/conservation-innovation-center/) for the [Chesapeake Bay Program](https://www.chesapeakebay.net/), which is a regional partnership of EPA, other federal, state, and local agencies and governments, nonprofits, and academic institutions that leads and directs Chesapeake Bay restoration efforts.\n\nThe dataset is composed of 17 land use classes in Virginia and 16 classes in all other jurisdictions. Additional information is available in a land use [Class Description](https://www.chesapeakeconservancy.org/wp-content/uploads/2018/11/2013-Phase-6-Mapped-Land-Use-Definitions-Updated-PC-11302018.pdf) document. Images are stored in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "chesapeake-bay-watershed,chesapeake-conservancy,chesapeake-lu,land-use", "license": "proprietary", "title": "Chesapeake Land Use", "missionStartDate": "2013-01-01T00:00:00Z"}, "noaa-mrms-qpe-1h-pass1": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **1-Hour Pass 1** sub-product, i.e., 1-hour cumulative precipitation accumulation with a 1-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-1h-pass1,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 1-Hour Pass 1", "missionStartDate": "2022-07-21T20:00:00Z"}, "noaa-mrms-qpe-1h-pass2": {"abstract": "The [Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE)](https://www.nssl.noaa.gov/projects/mrms/) products are seamless 1-km mosaics of precipitation accumulation covering the continental United States, Alaska, Hawaii, the Caribbean, and Guam. The products are automatically generated through integration of data from multiple radars and radar networks, surface and satellite observations, numerical weather prediction (NWP) models, and climatology. The products are updated hourly at the top of the hour.\n\nMRMS QPE is available as a \"Pass 1\" or \"Pass 2\" product. The Pass 1 product is available with a 60-minute latency and includes 60-65% of gauges. The Pass 2 product has a higher latency of 120 minutes, but includes 99% of gauges. The Pass 1 and Pass 2 products are broken into 1-, 3-, 6-, 12-, 24-, 48-, and 72-hour accumulation sub-products.\n\nThis Collection contains the **1-Hour Pass 2** sub-product, i.e., 1-hour cumulative precipitation accumulation with a 2-hour latency. The data are available in [Cloud Optimized GeoTIFF](https://www.cogeo.org/) format as well as the original source GRIB2 format files. The GRIB2 files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "caribbean,guam,mrms,noaa,noaa-mrms-qpe-1h-pass2,precipitation,qpe,united-states,weather", "license": "proprietary", "title": "NOAA MRMS QPE 1-Hour Pass 2", "missionStartDate": "2022-07-21T20:00:00Z"}, "noaa-nclimgrid-monthly": {"abstract": "The [NOAA U.S. Climate Gridded Dataset (NClimGrid)](https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00332) consists of four climate variables derived from the [Global Historical Climatology Network daily (GHCNd)](https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily) dataset: maximum temperature, minimum temperature, average temperature, and precipitation. The data is provided in 1/24 degree lat/lon (nominal 5x5 kilometer) grids for the Continental United States (CONUS). \n\nNClimGrid data is available in monthly and daily temporal intervals, with the daily data further differentiated as \"prelim\" (preliminary) or \"scaled\". Preliminary daily data is available within approximately three days of collection. Once a calendar month of preliminary daily data has been collected, it is scaled to match the corresponding monthly value. Monthly data is available from 1895 to the present. Daily preliminary and daily scaled data is available from 1951 to the present. \n\nThis Collection contains **Monthly** data. See the journal publication [\"Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions\"](https://journals.ametsoc.org/view/journals/apme/53/5/jamc-d-13-0248.1.xml) for more information about monthly gridded data.\n\nUsers of all NClimGrid data product should be aware that [NOAA advertises](https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00332) that:\n>\"On an annual basis, approximately one year of 'final' NClimGrid data is submitted to replace the initially supplied 'preliminary' data for the same time period. Users should be sure to ascertain which level of data is required for their research.\"\n\nThe source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\n*Note*: The Planetary Computer currently has STAC metadata for just the monthly collection. We'll have STAC metadata for daily data in our next release. In the meantime, you can access the daily NetCDF data directly from Blob Storage using the storage container at `https://nclimgridwesteurope.blob.core.windows.net/nclimgrid`. See https://planetarycomputer.microsoft.com/docs/concepts/data-catalog/#access-patterns for more.*\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate,nclimgrid,noaa,noaa-nclimgrid-monthly,precipitation,temperature,united-states", "license": "proprietary", "title": "Monthly NOAA U.S. Climate Gridded Dataset (NClimGrid)", "missionStartDate": "1895-01-01T00:00:00Z"}, "goes-glm": {"abstract": "The [Geostationary Lightning Mapper (GLM)](https://www.goes-r.gov/spacesegment/glm.html) is a single-channel, near-infrared optical transient detector that can detect the momentary changes in an optical scene, indicating the presence of lightning. GLM measures total lightning (in-cloud, cloud-to-cloud and cloud-to-ground) activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. GLM collects information such as the frequency, location and extent of lightning discharges to identify intensifying thunderstorms and tropical cyclones. Trends in total lightning available from the GLM provide critical information to forecasters, allowing them to focus on developing severe storms much earlier and before these storms produce damaging winds, hail or even tornadoes.\n\nThe GLM data product consists of a hierarchy of earth-located lightning radiant energy measures including events, groups, and flashes:\n\n- Lightning events are detected by the instrument.\n- Lightning groups are a collection of one or more lightning events that satisfy temporal and spatial coincidence thresholds.\n- Similarly, lightning flashes are a collection of one or more lightning groups that satisfy temporal and spatial coincidence thresholds.\n\nThe product includes the relationship among lightning events, groups, and flashes, and the area coverage of lightning groups and flashes. The product also includes processing and data quality metadata, and satellite state and location information. \n\nThis Collection contains GLM L2 data in tabular ([GeoParquet](https://github.com/opengeospatial/geoparquet)) format and the original source NetCDF format. The NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).", "instrument": "FM1,FM2", "platform": "GOES", "platformSerialIdentifier": "GOES-16,GOES-17", "processingLevel": ["L2"], "keywords": "fm1,fm2,goes,goes-16,goes-17,goes-glm,l2,lightning,nasa,noaa,satellite,weather", "license": "proprietary", "title": "GOES-R Lightning Detection", "missionStartDate": "2018-02-13T16:10:00Z"}, "usda-cdl": {"abstract": "The Cropland Data Layer (CDL) is a product of the USDA National Agricultural Statistics Service (NASS) with the mission \"to provide timely, accurate and useful statistics in service to U.S. agriculture\" (Johnson and Mueller, 2010, p. 1204). The CDL is a crop-specific land cover classification product of more than 100 crop categories grown in the United States. CDLs are derived using a supervised land cover classification of satellite imagery. The supervised classification relies on first manually identifying pixels within certain images, often called training sites, which represent the same crop or land cover type. Using these training sites, a spectral signature is developed for each crop type that is then used by the analysis software to identify all other pixels in the satellite image representing the same crop. Using this method, a new CDL is compiled annually and released to the public a few months after the end of the growing season.\n\nThis collection includes Cropland, Confidence, Cultivated, and Frequency products.\n\n- Cropland: Crop-specific land cover data created annually. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat.\n- Confidence: The predicted confidence associated with an output pixel. A value of zero indicates low confidence, while a value of 100 indicates high confidence.\n- Cultivated: cultivated and non-cultivated land cover for CONUS based on land cover information derived from the 2017 through 2021 Cropland products.\n- Frequency: crop specific planting frequency based on land cover information derived from the 2008 through 2021 Cropland products.\n\nFor more, visit the [Cropland Data Layer homepage](https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php).", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "agriculture,land-cover,land-use,united-states,usda,usda-cdl", "license": "proprietary", "title": "USDA Cropland Data Layers (CDLs)", "missionStartDate": "2008-01-01T00:00:00Z"}, "eclipse": {"abstract": "The [Project Eclipse](https://www.microsoft.com/en-us/research/project/project-eclipse/) Network is a low-cost air quality sensing network for cities and a research project led by the [Urban Innovation Group]( https://www.microsoft.com/en-us/research/urban-innovation-research/) at Microsoft Research.\n\nProject Eclipse currently includes over 100 locations in Chicago, Illinois, USA.\n\nThis network was deployed starting in July, 2021, through a collaboration with the City of Chicago, the Array of Things Project, JCDecaux Chicago, and the Environmental Law and Policy Center as well as local environmental justice organizations in the city. [This talk]( https://www.microsoft.com/en-us/research/video/technology-demo-project-eclipse-hyperlocal-air-quality-monitoring-for-cities/) documents the network design and data calibration strategy.\n\n## Storage resources\n\nData are stored in [Parquet](https://parquet.apache.org/) files in Azure Blob Storage in the West Europe Azure region, in the following blob container:\n\n`https://ai4edataeuwest.blob.core.windows.net/eclipse`\n\nWithin that container, the periodic occurrence snapshots are stored in `Chicago/YYYY-MM-DD`, where `YYYY-MM-DD` corresponds to the date of the snapshot.\nEach snapshot contains a sensor readings from the next 7-days in Parquet format starting with date on the folder name YYYY-MM-DD.\nTherefore, the data files for the first snapshot are at\n\n`https://ai4edataeuwest.blob.core.windows.net/eclipse/chicago/2022-01-01/data_*.parquet\n\nThe Parquet file schema is as described below. \n\n## Additional Documentation\n\nFor details on Calibration of Pm2.5, O3 and NO2, please see [this PDF](https://ai4edatasetspublicassets.blob.core.windows.net/assets/aod_docs/Calibration_Doc_v1.1.pdf).\n\n## License and attribution\nPlease cite: Daepp, Cabral, Ranganathan et al. (2022) [Eclipse: An End-to-End Platform for Low-Cost, Hyperlocal Environmental Sensing in Cities. ACM/IEEE Information Processing in Sensor Networks. Milan, Italy.](https://www.microsoft.com/en-us/research/uploads/prod/2022/05/ACM_2022-IPSN_FINAL_Eclipse.pdf)\n\n## Contact\n\nFor questions about this dataset, contact [`msrurbanops@microsoft.com`](mailto:msrurbanops@microsoft.com?subject=eclipse%20question) \n\n\n## Learn more\n\nThe [Eclipse Project](https://www.microsoft.com/en-us/research/urban-innovation-research/) contains an overview of the Project Eclipse at Microsoft Research.\n\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "air-pollution,eclipse,pm25", "license": "proprietary", "title": "Urban Innovation Eclipse Sensor Data", "missionStartDate": "2021-01-01T00:00:00Z"}, "esa-cci-lc": {"abstract": "The ESA Climate Change Initiative (CCI) [Land Cover dataset](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview) provides consistent global annual land cover maps at 300m spatial resolution from 1992 to 2020. The land cover classes are defined using the United Nations Food and Agriculture Organization's (UN FAO) [Land Cover Classification System](https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/) (LCCS). In addition to the land cover maps, four quality flags are produced to document the reliability of the classification and change detection. \n\nThe data in this Collection have been converted from the [original NetCDF data](https://planetarycomputer.microsoft.com/dataset/esa-cci-lc-netcdf) to a set of tiled [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cci,esa,esa-cci-lc,global,land-cover", "license": "proprietary", "title": "ESA Climate Change Initiative Land Cover Maps (Cloud Optimized GeoTIFF)", "missionStartDate": "1992-01-01T00:00:00Z"}, "esa-cci-lc-netcdf": {"abstract": "The ESA Climate Change Initiative (CCI) [Land Cover dataset](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview) provides consistent global annual land cover maps at 300m spatial resolution from 1992 to 2020. The land cover classes are defined using the United Nations Food and Agriculture Organization's (UN FAO) [Land Cover Classification System](https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/) (LCCS). In addition to the land cover maps, four quality flags are produced to document the reliability of the classification and change detection. \n\nThe data in this Collection are the original NetCDF files accessed from the [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/#!/home). We recommend users use the [`esa-cci-lc` Collection](planetarycomputer.microsoft.com/dataset/esa-cci-lc), which provides the data as Cloud Optimized GeoTIFFs.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cci,esa,esa-cci-lc-netcdf,global,land-cover", "license": "proprietary", "title": "ESA Climate Change Initiative Land Cover Maps (NetCDF)", "missionStartDate": "1992-01-01T00:00:00Z"}, "fws-nwi": {"abstract": "The Wetlands Data Layer is the product of over 45 years of work by the National Wetlands Inventory (NWI) and its collaborators and currently contains more than 35 million wetland and deepwater features. This dataset, covering the conterminous United States, Hawaii, Puerto Rico, the Virgin Islands, Guam, the major Northern Mariana Islands and Alaska, continues to grow at a rate of 50 to 100 million acres annually as data are updated.\n\n**NOTE:** Due to the variation in use and analysis of this data by the end user, each state's wetlands data extends beyond the state boundary. Each state includes wetlands data that intersect the 1:24,000 quadrangles that contain part of that state (1:2,000,000 source data). This allows the user to clip the data to their specific analysis datasets. Beware that two adjacent states will contain some of the same data along their borders.\n\nFor more information, visit the National Wetlands Inventory [homepage](https://www.fws.gov/program/national-wetlands-inventory).\n\n## STAC Metadata\n\nIn addition to the `zip` asset in every STAC item, each item has its own assets unique to its wetlands. In general, each item will have several assets, each linking to a [geoparquet](https://github.com/opengeospatial/geoparquet) asset with data for the entire region or a sub-region within that state. Use the `cloud-optimized` [role](https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md#asset-roles) to select just the geoparquet assets. See the Example Notebook for more.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "fws-nwi,united-states,usfws,wetlands", "license": "proprietary", "title": "FWS National Wetlands Inventory", "missionStartDate": "2022-10-01T00:00:00Z"}, "usgs-lcmap-conus-v13": {"abstract": "The [Land Change Monitoring, Assessment, and Projection](https://www.usgs.gov/special-topics/lcmap) (LCMAP) product provides land cover mapping and change monitoring from the U.S. Geological Survey's [Earth Resources Observation and Science](https://www.usgs.gov/centers/eros) (EROS) Center. LCMAP's Science Products are developed by applying time-series modeling on a per-pixel basis to [Landsat Analysis Ready Data](https://www.usgs.gov/landsat-missions/landsat-us-analysis-ready-data) (ARD) using an implementation of the [Continuous Change Detection and Classification](https://doi.org/10.1016/j.rse.2014.01.011) (CCDC) algorithm. All available clear (non-cloudy) U.S. Landsat ARD observations are fit to a harmonic model to predict future Landsat-like surface reflectance. Where Landsat surface reflectance observations differ significantly from those predictions, a change is identified. Attributes of the resulting model sequences (e.g., start/end dates, residuals, model coefficients) are then used to produce a set of land surface change products and as inputs to the subsequent classification to thematic land cover. \n\nThis [STAC](https://stacspec.org/en) Collection contains [LCMAP CONUS Collection 1.3](https://www.usgs.gov/special-topics/lcmap/collection-13-conus-science-products), which was released in August 2022 for years 1985-2021. The data are tiled according to the Landsat ARD tile grid and consist of [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs) and corresponding metadata files. Note that the provided COGs differ slightly from those in the USGS source data. They have been reprocessed to add overviews, \"nodata\" values where appropriate, and an updated projection definition.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "conus,land-cover,land-cover-change,lcmap,usgs,usgs-lcmap-conus-v13", "license": "proprietary", "title": "USGS LCMAP CONUS Collection 1.3", "missionStartDate": "1985-01-01T00:00:00Z"}, "usgs-lcmap-hawaii-v10": {"abstract": "The [Land Change Monitoring, Assessment, and Projection](https://www.usgs.gov/special-topics/lcmap) (LCMAP) product provides land cover mapping and change monitoring from the U.S. Geological Survey's [Earth Resources Observation and Science](https://www.usgs.gov/centers/eros) (EROS) Center. LCMAP's Science Products are developed by applying time-series modeling on a per-pixel basis to [Landsat Analysis Ready Data](https://www.usgs.gov/landsat-missions/landsat-us-analysis-ready-data) (ARD) using an implementation of the [Continuous Change Detection and Classification](https://doi.org/10.1016/j.rse.2014.01.011) (CCDC) algorithm. All available clear (non-cloudy) U.S. Landsat ARD observations are fit to a harmonic model to predict future Landsat-like surface reflectance. Where Landsat surface reflectance observations differ significantly from those predictions, a change is identified. Attributes of the resulting model sequences (e.g., start/end dates, residuals, model coefficients) are then used to produce a set of land surface change products and as inputs to the subsequent classification to thematic land cover. \n\nThis [STAC](https://stacspec.org/en) Collection contains [LCMAP Hawaii Collection 1.0](https://www.usgs.gov/special-topics/lcmap/collection-1-hawaii-science-products), which was released in January 2022 for years 2000-2020. The data are tiled according to the Landsat ARD tile grid and consist of [Cloud Optimized GeoTIFFs](https://www.cogeo.org/) (COGs) and corresponding metadata files. Note that the provided COGs differ slightly from those in the USGS source data. They have been reprocessed to add overviews, \"nodata\" values where appropriate, and an updated projection definition.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "hawaii,land-cover,land-cover-change,lcmap,usgs,usgs-lcmap-hawaii-v10", "license": "proprietary", "title": "USGS LCMAP Hawaii Collection 1.0", "missionStartDate": "2000-01-01T00:00:00Z"}, "noaa-climate-normals-tabular": {"abstract": "The [NOAA United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals) provide information about typical climate conditions for thousands of weather station locations across the United States. Normals act both as a ruler to compare current weather and as a predictor of conditions in the near future. The official normals are calculated for a uniform 30 year period, and consist of annual/seasonal, monthly, daily, and hourly averages and statistics of temperature, precipitation, and other climatological variables for each weather station. \n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThis Collection contains tabular weather variable data at weather station locations in GeoParquet format, converted from the source CSV files. The source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\nData are provided for annual/seasonal, monthly, daily, and hourly frequencies for the following time periods:\n\n- Legacy 30-year normals (1981\u20132010)\n- Supplemental 15-year normals (2006\u20132020)\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-tabular,surface-observations,weather", "license": "proprietary", "title": "NOAA US Tabular Climate Normals", "missionStartDate": "1981-01-01T00:00:00Z"}, "noaa-climate-normals-netcdf": {"abstract": "The [NOAA Gridded United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals#tab-1027) provide a continuous grid of temperature and precipitation data across the contiguous United States (CONUS). The grids are derived from NOAA's [NClimGrid dataset](https://planetarycomputer.microsoft.com/dataset/group/noaa-nclimgrid), and resolutions (nominal 5x5 kilometer) and spatial extents (CONUS) therefore match that of NClimGrid. Monthly, seasonal, and annual gridded normals are computed from simple averages of the NClimGrid data and are provided for three time-periods: 1901\u20132020, 1991\u20132020, and 2006\u20132020. Daily gridded normals are smoothed for a smooth transition from one day to another and are provided for two time-periods: 1991\u20132020, and 2006\u20132020.\n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThe data in this Collection are the original NetCDF files provided by NOAA's National Centers for Environmental Information. This Collection contains gridded data for the following frequencies and time periods:\n\n- Annual, seasonal, and monthly normals\n - 100-year (1901\u20132000)\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n- Daily normals\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n\nFor most use-cases, we recommend using the [`noaa-climate-normals-gridded`](https://planetarycomputer.microsoft.com/dataset/noaa-climate-normals-gridded) collection, which contains the same data in Cloud Optimized GeoTIFF format. The NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-netcdf,surface-observations,weather", "license": "proprietary", "title": "NOAA US Gridded Climate Normals (NetCDF)", "missionStartDate": "1901-01-01T00:00:00Z"}, "noaa-climate-normals-gridded": {"abstract": "The [NOAA Gridded United States Climate Normals](https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals#tab-1027) provide a continuous grid of temperature and precipitation data across the contiguous United States (CONUS). The grids are derived from NOAA's [NClimGrid dataset](https://planetarycomputer.microsoft.com/dataset/group/noaa-nclimgrid), and resolutions (nominal 5x5 kilometer) and spatial extents (CONUS) therefore match that of NClimGrid. Monthly, seasonal, and annual gridded normals are computed from simple averages of the NClimGrid data and are provided for three time-periods: 1901\u20132020, 1991\u20132020, and 2006\u20132020. Daily gridded normals are smoothed for a smooth transition from one day to another and are provided for two time-periods: 1991\u20132020, and 2006\u20132020.\n\nNOAA produces Climate Normals in accordance with the [World Meteorological Organization](https://public.wmo.int/en) (WMO), of which the United States is a member. The WMO requires each member nation to compute 30-year meteorological quantity averages at least every 30 years, and recommends an update each decade, in part to incorporate newer weather stations. The 1991\u20132020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. \n\nThis Collection contains gridded data for the following frequencies and time periods:\n\n- Annual, seasonal, and monthly normals\n - 100-year (1901\u20132000)\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n- Daily normals\n - 30-year (1991\u20132020)\n - 15-year (2006\u20132020)\n\nThe data in this Collection have been converted from the original NetCDF format to Cloud Optimized GeoTIFFs (COGs). The source NetCDF files are delivered to Azure as part of the [NOAA Open Data Dissemination (NODD) Program](https://www.noaa.gov/information-technology/open-data-dissemination).\n\n## STAC Metadata\n\nThe STAC items in this collection contain several custom fields that can be used to further filter the data.\n\n* `noaa_climate_normals:period`: Climate normal time period. This can be \"1901-2000\", \"1991-2020\", or \"2006-2020\".\n* `noaa_climate_normals:frequency`: Climate normal temporal interval (frequency). This can be \"daily\", \"monthly\", \"seasonal\" , or \"annual\"\n* `noaa_climate_normals:time_index`: Time step index, e.g., month of year (1-12).\n\nThe `description` field of the assets varies by frequency. Using `prcp_norm` as an example, the descriptions are\n\n* annual: \"Annual precipitation normals from monthly precipitation normal values\"\n* seasonal: \"Seasonal precipitation normals (WSSF) from monthly normals\"\n* monthly: \"Monthly precipitation normals from monthly precipitation values\"\n* daily: \"Precipitation normals from daily averages\"\n\nCheck the assets on individual items for the appropriate description.\n\nThe STAC keys for most assets consist of two abbreviations. A \"variable\":\n\n\n| Abbreviation | Description |\n| ------------ | ---------------------------------------- |\n| prcp | Precipitation over the time period |\n| tavg | Mean temperature over the time period |\n| tmax | Maximum temperature over the time period |\n| tmin | Minimum temperature over the time period |\n\nAnd an \"aggregation\":\n\n| Abbreviation | Description |\n| ------------ | ------------------------------------------------------------------------------ |\n| max | Maximum of the variable over the time period |\n| min | Minimum of the variable over the time period |\n| std | Standard deviation of the value over the time period |\n| flag | An count of the number of inputs (months, years, etc.) to calculate the normal |\n| norm | The normal for the variable over the time period |\n\nSo, for example, `prcp_max` for monthly data is the \"Maximum values of all input monthly precipitation normal values\".\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "climate-normals,climatology,conus,noaa,noaa-climate-normals-gridded,surface-observations,weather", "license": "proprietary", "title": "NOAA US Gridded Climate Normals (Cloud-Optimized GeoTIFF)", "missionStartDate": "1901-01-01T00:00:00Z"}, "aster-l1t": {"abstract": "The [ASTER](https://terra.nasa.gov/about/terra-instruments/aster) instrument, launched on-board NASA's [Terra](https://terra.nasa.gov/) satellite in 1999, provides multispectral images of the Earth at 15m-90m resolution. ASTER images provide information about land surface temperature, color, elevation, and mineral composition.\n\nThis dataset represents ASTER [L1T](https://lpdaac.usgs.gov/products/ast_l1tv003/) data from 2000-2006. L1T images have been terrain-corrected and rotated to a north-up UTM projection. Images are in [cloud-optimized GeoTIFF](https://www.cogeo.org/) format.\n", "instrument": "aster", "platform": null, "platformSerialIdentifier": "terra", "processingLevel": null, "keywords": "aster,aster-l1t,global,nasa,satellite,terra,usgs", "license": "proprietary", "title": "ASTER L1T", "missionStartDate": "2000-03-04T12:00:00Z"}, "cil-gdpcir-cc-by-sa": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc-by-sa#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc-by-sa#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 179MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | ---------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40] |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40] |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40] |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc-by-sa,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC-BY-SA-4.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC-BY-SA-4.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "cil-gdpcir-cc-by": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc-by#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc-by#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 180MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | ---------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40] |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40] |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40] |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40] |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40] |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40] |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40] |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc-by,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC-BY-4.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC-BY-4.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "cil-gdpcir-cc0": {"abstract": "The World Climate Research Programme's [6th Coupled Model Intercomparison Project (CMIP6)](https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6) represents an enormous advance in the quality, detail, and scope of climate modeling.\n\nThe [Global Downscaled Projections for Climate Impacts Research](https://github.com/ClimateImpactLab/downscaleCMIP6) dataset makes this modeling more applicable to understanding the impacts of changes in the climate on humans and society with two key developments: trend-preserving bias correction and downscaling. In this dataset, the [Climate Impact Lab](https://impactlab.org) provides global, daily minimum and maximum air temperature at the surface (`tasmin` and `tasmax`) and daily cumulative surface precipitation (`pr`) corresponding to the CMIP6 historical, ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 scenarios for 25 global climate models on a 1/4-degree regular global grid.\n\n## Accessing the data\n\nGDPCIR data can be accessed on the Microsoft Planetary Computer. The dataset is made of of three collections, distinguished by data license:\n* [Public domain (CC0-1.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0)\n* [Attribution (CC BY 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by)\n* [Attribution-ShareAlike (CC BY SA 4.0) collection](https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa)\n\nEach modeling center with bias corrected and downscaled data in this collection falls into one of these license categories - see the [table below](/dataset/cil-gdpcir-cc0#available-institutions-models-and-scenarios-by-license-collection) to see which model is in each collection, and see the section below on [Citing, Licensing, and using data produced by this project](/dataset/cil-gdpcir-cc0#citing-licensing-and-using-data-produced-by-this-project) for citations and additional information about each license.\n\n## Data format & contents\n\nThe data is stored as partitioned zarr stores (see [https://zarr.readthedocs.io](https://zarr.readthedocs.io)), each of which includes thousands of data and metadata files covering the full time span of the experiment. Historical zarr stores contain just over 50 GB, while SSP zarr stores contain nearly 70GB. Each store is stored as a 32-bit float, with dimensions time (daily datetime), lat (float latitude), and lon (float longitude). The data is chunked at each interval of 365 days and 90 degree interval of latitude and longitude. Therefore, each chunk is `(365, 360, 360)`, with each chunk occupying approximately 180MB in memory.\n\nHistorical data is daily, excluding leap days, from Jan 1, 1950 to Dec 31, 2014; SSP data is daily, excluding leap days, from Jan 1, 2015 to either Dec 31, 2099 or Dec 31, 2100, depending on data availability in the source GCM.\n\nThe spatial domain covers all 0.25-degree grid cells, indexed by the grid center, with grid edges on the quarter-degree, using a -180 to 180 longitude convention. Thus, the \u201clon\u201d coordinate extends from -179.875 to 179.875, and the \u201clat\u201d coordinate extends from -89.875 to 89.875, with intermediate values at each 0.25-degree increment between (e.g. -179.875, -179.625, -179.375, etc).\n\n## Available institutions, models, and scenarios by license collection\n\n| Modeling institution | Source model | Available experiments | License collection |\n| -------------------- | ----------------- | ------------------------------------------ | -------------------------------------------------- |\n| CAS | FGOALS-g3 [^1] | SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM4-8 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| INM | INM-CM5-0 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | Public domain datasets |\n| BCC | BCC-CSM2-MR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| CMCC | CMCC-CM2-SR5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40 |\n| CMCC | CMCC-ESM2 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-40 |\n| CSIRO-ARCCSS | ACCESS-CM2 | SSP2-4.5 and SSP3-7.0 | CC-BY-40 |\n| CSIRO | ACCESS-ESM1-5 | SSP1-2.6, SSP2-4.5, and SSP3-7.0 | CC-BY-40 |\n| MIROC | MIROC-ES2L | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MIROC | MIROC6 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MOHC | HadGEM3-GC31-LL | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40 |\n| MOHC | UKESM1-0-LL | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MPI-M | MPI-ESM1-2-LR | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| MPI-M/DKRZ [^2] | MPI-ESM1-2-HR | SSP1-2.6 and SSP5-8.5 | CC-BY-40 |\n| NCC | NorESM2-LM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NCC | NorESM2-MM | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NOAA-GFDL | GFDL-CM4 | SSP2-4.5 and SSP5-8.5 | CC-BY-40 |\n| NOAA-GFDL | GFDL-ESM4 | SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 | CC-BY-40 |\n| NUIST | NESM3 | SSP1-2.6, SSP2-4.5, and SSP5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3 | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-AerChem | ssp370 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-CC | ssp245 and ssp585 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-Veg | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| EC-Earth-Consortium | EC-Earth3-Veg-LR | ssp1-2.6, ssp2-4.5, ssp3-7.0, and ssp5-8.5 | CC-BY-40 |\n| CCCma | CanESM5 | ssp1-2.6, ssp2-4.5, ssp3-7.0, ssp5-8.5 | CC-BY-SA-40 |\n\n*Notes:*\n\n[^1]: At the time of running, no ssp1-2.6 precipitation data was available. Therefore, we provide `tasmin` and `tamax` for this model and experiment, but not `pr`. All other model/experiment combinations in the above table include all three variables.\n\n[^2]: The institution which ran MPI-ESM1-2-HR\u2019s historical (CMIP) simulations is `MPI-M`, while the future (ScenarioMIP) simulations were run by `DKRZ`. Therefore, the institution component of `MPI-ESM1-2-HR` filepaths differ between `historical` and `SSP` scenarios.\n\n## Project methods\n\nThis project makes use of statistical bias correction and downscaling algorithms, which are specifically designed to accurately represent changes in the extremes. For this reason, we selected Quantile Delta Mapping (QDM), following the method introduced by [Cannon et al. (2015)](https://doi.org/10.1175/JCLI-D-14-00754.1), which preserves quantile-specific trends from the GCM while fitting the full distribution for a given day-of-year to a reference dataset (ERA5).\n\nWe then introduce a similar method tailored to increase spatial resolution while preserving extreme behavior, Quantile-Preserving Localized-Analog Downscaling (QPLAD).\n\nTogether, these methods provide a robust means to handle both the central and tail behavior seen in climate model output, while aligning the full distribution to a state-of-the-art reanalysis dataset and providing the spatial granularity needed to study surface impacts.\n\nFor further documentation, see [Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts](https://egusphere.copernicus.org/preprints/2023/egusphere-2022-1513/) (EGUsphere, 2022 [preprint]).\n\n\n## Citing, licensing, and using data produced by this project\n\nProjects making use of the data produced as part of the Climate Impact Lab Global Downscaled Projections for Climate Impacts Research (CIL GDPCIR) project are requested to cite both this project and the source datasets from which these results are derived. Additionally, the use of data derived from some GCMs *requires* citations, and some modeling centers impose licensing restrictions & requirements on derived works. See each GCM's license info in the links below for more information.\n\n### CIL GDPCIR\n\nUsers are requested to cite this project in derived works. Our method documentation paper may be cited using the following:\n\n> Gergel, D. R., Malevich, S. B., McCusker, K. E., Tenezakis, E., Delgado, M. T., Fish, M. A., and Kopp, R. E.: Global downscaled projections for climate impacts research (GDPCIR): preserving extremes for modeling future climate impacts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1513, 2023. \n\nThe code repository may be cited using the following:\n\n> Diana Gergel, Kelly McCusker, Brewster Malevich, Emile Tenezakis, Meredith Fish, Michael Delgado (2022). ClimateImpactLab/downscaleCMIP6: (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6403794\n\n### ERA5\n\nAdditionally, we request you cite the historical dataset used in bias correction and downscaling, ERA5. See the [ECMWF guide to citing a dataset on the Climate Data Store](https://confluence.ecmwf.int/display/CKB/How+to+acknowledge+and+cite+a+Climate+Data+Store+%28CDS%29+catalogue+entry+and+the+data+published+as+part+of+it):\n\n> Hersbach, H, et al. The ERA5 global reanalysis. Q J R Meteorol Soc.2020; 146: 1999\u20132049. DOI: [10.1002/qj.3803](https://doi.org/10.1002/qj.3803)\n>\n> Mu\u00f1oz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n>\n> Mu\u00f1oz Sabater, J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on June 4, 2021), DOI: [10.24381/cds.e2161bac](https://doi.org/10.24381/cds.e2161bac)\n\n### GCM-specific citations & licenses\n\nThe CMIP6 simulation data made available through the Earth System Grid Federation (ESGF) are subject to Creative Commons [BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) or [BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) licenses. The Climate Impact Lab has reached out to each of the modeling institutions to request waivers from these terms so the outputs of this project may be used with fewer restrictions, and has been granted permission to release the data using the licenses listed here.\n\n#### Public Domain Datasets\n\nThe following bias corrected and downscaled model simulations are available in the public domain using a [CC0 1.0 Universal Public Domain Declaration](https://creativecommons.org/publicdomain/zero/1.0/). Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc0.\n\n* **FGOALS-g3**\n\n License description: [data_licenses/FGOALS-g3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/FGOALS-g3.txt)\n\n CMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 CMIP*. Version 20190826. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1783\n\n ScenarioMIP Citation:\n\n > Li, Lijuan **(2019)**. *CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190818; SSP2-4.5 version 20190818; SSP3-7.0 version 20190820; SSP5-8.5 tasmax version 20190819; SSP5-8.5 tasmin version 20190819; SSP5-8.5 pr version 20190818. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2056\n\n\n* **INM-CM4-8**\n\n License description: [data_licenses/INM-CM4-8.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM4-8.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 CMIP*. Version 20190530. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1422\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP*. Version 20190603. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321\n\n\n* **INM-CM5-0**\n\n License description: [data_licenses/INM-CM5-0.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/INM-CM5-0.txt)\n\n CMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 CMIP*. Version 20190610. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1423\n\n ScenarioMIP Citation:\n\n > Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana **(2019)**. *INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190619; SSP2-4.5 version 20190619; SSP3-7.0 version 20190618; SSP5-8.5 version 20190724. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322\n\n\n#### CC-BY-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). Note that this license requires citation of the source model output (included here). Please see https://creativecommons.org/licenses/by/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by.\n\n* **ACCESS-CM2**\n\n License description: [data_licenses/ACCESS-CM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-CM2.txt)\n\n CMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2281\n\n ScenarioMIP Citation:\n\n > Dix, Martin; Bi, Doahua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui **(2019)**. *CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285\n\n\n* **ACCESS-ESM1-5**\n\n License description: [data_licenses/ACCESS-ESM1-5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/ACCESS-ESM1-5.txt)\n\n CMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2288\n\n ScenarioMIP Citation:\n\n > Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey **(2019)**. *CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP*. Version 20191115. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2291\n\n\n* **BCC-CSM2-MR**\n\n License description: [data_licenses/BCC-CSM2-MR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/BCC-CSM2-MR.txt)\n\n CMIP Citation:\n\n > Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2018)**. *BCC BCC-CSM2MR model output prepared for CMIP6 CMIP*. Version 20181126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1725\n\n ScenarioMIP Citation:\n\n > Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min **(2019)**. *BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190315; SSP2-4.5 version 20190318; SSP3-7.0 version 20190318; SSP5-8.5 version 20190318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732\n\n\n* **CMCC-CM2-SR5**\n\n License description: [data_licenses/CMCC-CM2-SR5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-CM2-SR5.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP*. Version 20200616. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1362\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele **(2020)**. *CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200717; SSP2-4.5 version 20200617; SSP3-7.0 version 20200622; SSP5-8.5 version 20200622. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1365\n\n\n* **CMCC-ESM2**\n\n License description: [data_licenses/CMCC-ESM2.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CMCC-ESM2.txt)\n\n CMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP*. Version 20210114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13164\n\n ScenarioMIP Citation:\n\n > Lovato, Tomas; Peano, Daniele; Butensch\u00f6n, Momme **(2021)**. *CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20210126; SSP2-4.5 version 20210129; SSP3-7.0 version 20210202; SSP5-8.5 version 20210126. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13168\n\n\n* **EC-Earth3-AerChem**\n\n License description: [data_licenses/EC-Earth3-AerChem.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-AerChem.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP*. Version 20200624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.639\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP*. Version 20200827. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.724\n\n\n* **EC-Earth3-CC**\n\n License description: [data_licenses/EC-Earth3-CC.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-CC.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.640\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2021)**. *EC-Earth-Consortium EC-Earth3-CC model output prepared for CMIP6 ScenarioMIP*. Version 20210113. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.15327\n\n\n* **EC-Earth3-Veg-LR**\n\n License description: [data_licenses/EC-Earth3-Veg-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg-LR.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP*. Version 20200217. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.643\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2020)**. *EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20201201; SSP2-4.5 version 20201123; SSP3-7.0 version 20201123; SSP5-8.5 version 20201201. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.728\n\n\n* **EC-Earth3-Veg**\n\n License description: [data_licenses/EC-Earth3-Veg.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3-Veg.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.642\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP*. Version 20200225. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.727\n\n\n* **EC-Earth3**\n\n License description: [data_licenses/EC-Earth3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/EC-Earth3.txt)\n\n CMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.181\n\n ScenarioMIP Citation:\n\n > EC-Earth Consortium (EC-Earth) **(2019)**. *EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP*. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251\n\n\n* **GFDL-CM4**\n\n License description: [data_licenses/GFDL-CM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-CM4.txt)\n\n CMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1402\n\n ScenarioMIP Citation:\n\n > Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, Chris; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong **(2018)**. *NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9242\n\n\n* **GFDL-ESM4**\n\n License description: [data_licenses/GFDL-ESM4.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/GFDL-ESM4.txt)\n\n CMIP Citation:\n\n > Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao, Ming **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP*. Version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407\n\n ScenarioMIP Citation:\n\n > John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin **(2018)**. *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP*. Version 20180701. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1414\n\n\n* **HadGEM3-GC31-LL**\n\n License description: [data_licenses/HadGEM3-GC31-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/HadGEM3-GC31-LL.txt)\n\n CMIP Citation:\n\n > Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim **(2018)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP*. Version 20190624. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.419\n\n ScenarioMIP Citation:\n\n > Good, Peter **(2019)**. *MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20200114; SSP2-4.5 version 20190908; SSP5-8.5 version 20200114. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10845\n\n\n* **MIROC-ES2L**\n\n License description: [data_licenses/MIROC-ES2L.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC-ES2L.txt)\n\n CMIP Citation:\n\n > Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 CMIP*. Version 20191129. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.902\n\n ScenarioMIP Citation:\n\n > Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio **(2019)**. *MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP*. Version 20200318. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936\n\n\n* **MIROC6**\n\n License description: [data_licenses/MIROC6.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MIROC6.txt)\n\n CMIP Citation:\n\n > Tatebe, Hiroaki; Watanabe, Masahiro **(2018)**. *MIROC MIROC6 model output prepared for CMIP6 CMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881\n\n ScenarioMIP Citation:\n\n > Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki **(2019)**. *MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP*. Version 20191016. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898\n\n\n* **MPI-ESM1-2-HR**\n\n License description: [data_licenses/MPI-ESM1-2-HR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-HR.txt)\n\n CMIP Citation:\n\n > Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.741\n\n ScenarioMIP Citation:\n\n > Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Fr\u00fch, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2450\n\n\n* **MPI-ESM1-2-LR**\n\n License description: [data_licenses/MPI-ESM1-2-LR.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/MPI-ESM1-2-LR.txt)\n\n CMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.742\n\n ScenarioMIP Citation:\n\n > Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, J\u00f6rg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; M\u00fcller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich **(2019)**. *MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP*. Version 20190710. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.793\n\n\n* **NESM3**\n\n License description: [data_licenses/NESM3.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NESM3.txt)\n\n CMIP Citation:\n\n > Cao, Jian; Wang, Bin **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 CMIP*. Version 20190812. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2021\n\n ScenarioMIP Citation:\n\n > Cao, Jian **(2019)**. *NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190806; SSP2-4.5 version 20190805; SSP5-8.5 version 20190811. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2027\n\n\n* **NorESM2-LM**\n\n License description: [data_licenses/NorESM2-LM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-LM.txt)\n\n CMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 CMIP*. Version 20190815. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.502\n\n ScenarioMIP Citation:\n\n > Seland, \u00d8yvind; Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604\n\n\n* **NorESM2-MM**\n\n License description: [data_licenses/NorESM2-MM.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/NorESM2-MM.txt)\n\n CMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 CMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.506\n\n ScenarioMIP Citation:\n\n > Bentsen, Mats; Olivi\u00e8, Dirk Jan Leo; Seland, \u00d8yvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkev\u00e5g, Alf; Schwinger, J\u00f6rg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael **(2019)**. *NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP*. Version 20191108. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.608\n\n\n* **UKESM1-0-LL**\n\n License description: [data_licenses/UKESM1-0-LL.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/UKESM1-0-LL.txt)\n\n CMIP Citation:\n\n > Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP*. Version 20190627. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1569\n\n ScenarioMIP Citation:\n\n > Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy **(2019)**. *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP*. SSP1-2.6 version 20190708; SSP2-4.5 version 20190715; SSP3-7.0 version 20190726; SSP5-8.5 version 20190726. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567\n\n\n#### CC-BY-SA-4.0\n\nThe following bias corrected and downscaled model simulations are licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Note that this license requires citation of the source model output (included here) and requires that derived works be shared under the same license. Please see https://creativecommons.org/licenses/by-sa/4.0/ for more information. Access the collection on Planetary Computer at https://planetarycomputer.microsoft.com/dataset/cil-gdpcir-cc-by-sa.\n\n* **CanESM5**\n\n License description: [data_licenses/CanESM5.txt](https://raw.githubusercontent.com/ClimateImpactLab/downscaleCMIP6/master/data_licenses/CanESM5.txt)\n\n CMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 CMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1303\n\n ScenarioMIP Citation:\n\n > Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael **(2019)**. *CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP*. Version 20190429. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317\n\n## Acknowledgements\n\nThis work is the result of many years worth of work by members of the [Climate Impact Lab](https://impactlab.org), but would not have been possible without many contributions from across the wider scientific and computing communities.\n\nSpecifically, we would like to acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we would like to thank the climate modeling groups for producing and making their model output available. We would particularly like to thank the modeling institutions whose results are included as an input to this repository (listed above) for their contributions to the CMIP6 project and for responding to and granting our requests for license waivers.\n\nWe would also like to thank Lamont-Doherty Earth Observatory, the [Pangeo Consortium](https://github.com/pangeo-data) (and especially the [ESGF Cloud Data Working Group](https://pangeo-data.github.io/pangeo-cmip6-cloud/#)) and Google Cloud and the Google Public Datasets program for making the [CMIP6 Google Cloud collection](https://console.cloud.google.com/marketplace/details/noaa-public/cmip6) possible. In particular we're extremely grateful to [Ryan Abernathey](https://github.com/rabernat), [Naomi Henderson](https://github.com/naomi-henderson), [Charles Blackmon-Luca](https://github.com/charlesbluca), [Aparna Radhakrishnan](https://github.com/aradhakrishnanGFDL), [Julius Busecke](https://github.com/jbusecke), and [Charles Stern](https://github.com/cisaacstern) for the huge amount of work they've done to translate the ESGF CMIP6 netCDF archives into consistently-formattted, analysis-ready zarr stores on Google Cloud.\n\nWe're also grateful to the [xclim developers](https://github.com/Ouranosinc/xclim/graphs/contributors) ([DOI: 10.5281/zenodo.2795043](https://doi.org/10.5281/zenodo.2795043)), in particular [Pascal Bourgault](https://github.com/aulemahal), [David Huard](https://github.com/huard), and [Travis Logan](https://github.com/tlogan2000), for implementing the QDM bias correction method in the xclim python package, supporting our QPLAD implementation into the package, and ongoing support in integrating dask into downscaling workflows. For method advice and useful conversations, we would like to thank Keith Dixon, Dennis Adams-Smith, and [Joe Hamman](https://github.com/jhamman).\n\n## Financial support\n\nThis research has been supported by The Rockefeller Foundation and the Microsoft AI for Earth Initiative.\n\n## Additional links:\n\n* CIL GDPCIR project homepage: [github.com/ClimateImpactLab/downscaleCMIP6](https://github.com/ClimateImpactLab/downscaleCMIP6)\n* Project listing on zenodo: https://doi.org/10.5281/zenodo.6403794\n* Climate Impact Lab homepage: [impactlab.org](https://impactlab.org)", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "cil-gdpcir-cc0,climate-impact-lab,cmip6,precipitation,rhodium-group,temperature", "license": "CC0-1.0", "title": "CIL Global Downscaled Projections for Climate Impacts Research (CC0-1.0)", "missionStartDate": "1950-01-01T00:00:00Z"}, "ms-buildings": {"abstract": "Bing Maps is releasing open building footprints around the world. We have detected over 999 million buildings from Bing Maps imagery between 2014 and 2021 including Maxar and Airbus imagery. The data is freely available for download and use under ODbL. This dataset complements our other releases.\n\nFor more information, see the [GlobalMLBuildingFootprints](https://github.com/microsoft/GlobalMLBuildingFootprints/) repository on GitHub.\n\n## Building footprint creation\n\nThe building extraction is done in two stages:\n\n1. Semantic Segmentation \u2013 Recognizing building pixels on an aerial image using deep neural networks (DNNs)\n2. Polygonization \u2013 Converting building pixel detections into polygons\n\n**Stage 1: Semantic Segmentation**\n\n![Semantic segmentation](https://raw.githubusercontent.com/microsoft/GlobalMLBuildingFootprints/main/images/segmentation.jpg)\n\n**Stage 2: Polygonization**\n\n![Polygonization](https://github.com/microsoft/GlobalMLBuildingFootprints/raw/main/images/polygonization.jpg)\n\n## STAC metadata\n\nThis STAC collection has one STAC item per region. The `msbuildings:region` property can be used to filter items to a specific region.\n\n## Data assets\n\nThe building footprints are provided as a set of [geoparquet](https://github.com/opengeospatial/geoparquet) datasets. The data are partitioned at multiple levels. There is one [Parquet dataset](https://arrow.apache.org/docs/python/parquet.html#partitioned-datasets-multiple-files) per region. Regions are partitioned into many parquet files so that each file fits comfortably in memory.", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "bing-maps,buildings,footprint,geoparquet,microsoft,ms-buildings", "license": "ODbL-1.0", "title": "Microsoft Building Footprints", "missionStartDate": "2014-01-01T00:00:00Z"}, "io-biodiversity": {"abstract": "Generated by [Impact Observatory](https://www.impactobservatory.com/), in collaboration with [Vizzuality](https://www.vizzuality.com/), these datasets estimate terrestrial Biodiversity Intactness as 100-meter gridded maps for the years 2017-2020.\n\nMaps depicting the intactness of global biodiversity have become a critical tool for spatial planning and management, monitoring the extent of biodiversity across Earth, and identifying critical remaining intact habitat. Yet, these maps are often years out of date by the time they are available to scientists and policy-makers. The datasets in this STAC Collection build on past studies that map Biodiversity Intactness using the [PREDICTS database](https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.2579) of spatially referenced observations of biodiversity across 32,000 sites from over 750 studies. The approach differs from previous work by modeling the relationship between observed biodiversity metrics and contemporary, global, geospatial layers of human pressures, with the intention of providing a high resolution monitoring product into the future.\n\nBiodiversity intactness is estimated as a combination of two metrics: Abundance, the quantity of individuals, and Compositional Similarity, how similar the composition of species is to an intact baseline. Linear mixed effects models are fit to estimate the predictive capacity of spatial datasets of human pressures on each of these metrics and project results spatially across the globe. These methods, as well as comparisons to other leading datasets and guidance on interpreting results, are further explained in a methods [white paper](https://ai4edatasetspublicassets.blob.core.windows.net/assets/pdfs/io-biodiversity/Biodiversity_Intactness_whitepaper.pdf) entitled \u201cGlobal 100m Projections of Biodiversity Intactness for the years 2017-2020.\u201d\n\nAll years are available under a Creative Commons BY-4.0 license.\n", "instrument": null, "platform": null, "platformSerialIdentifier": null, "processingLevel": null, "keywords": "biodiversity,global,io-biodiversity", "license": "CC-BY-4.0", "title": "Biodiversity Intactness", "missionStartDate": "2017-01-01T00:00:00Z"}}}, "usgs_satapi_aws": {"providers_config": {"landsat-c2l2-sr": {"productType": "landsat-c2l2-sr"}, "landsat-c2l2-st": {"productType": "landsat-c2l2-st"}, "landsat-c2ard-st": {"productType": "landsat-c2ard-st"}, "landsat-c2l2alb-bt": {"productType": "landsat-c2l2alb-bt"}, "landsat-c2l3-fsca": {"productType": "landsat-c2l3-fsca"}, "landsat-c2ard-bt": {"productType": "landsat-c2ard-bt"}, "landsat-c2l1": {"productType": "landsat-c2l1"}, "landsat-c2l3-ba": {"productType": "landsat-c2l3-ba"}, "landsat-c2l2alb-st": {"productType": "landsat-c2l2alb-st"}, "landsat-c2ard-sr": {"productType": "landsat-c2ard-sr"}, "landsat-c2l2alb-sr": {"productType": "landsat-c2l2alb-sr"}, "landsat-c2l2alb-ta": {"productType": "landsat-c2l2alb-ta"}, "landsat-c2l3-dswe": {"productType": "landsat-c2l3-dswe"}, "landsat-c2ard-ta": {"productType": "landsat-c2ard-ta"}}, "product_types_config": {"landsat-c2l2-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 UTM Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 UTM Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-bt": {"abstract": "The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-bt,top-of-atmosphere-brightness-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Top of Atmosphere Brightness Temperature (BT) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l3-fsca": {"abstract": "The Landsat Fractional Snow Covered Area (fSCA) product contains an acquisition-based per-pixel snow cover fraction, an acquisition-based revised cloud mask for quality assessment, and a product metadata file.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,fractional-snow-covered-area,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-fsca", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Fractional Snow Covered Area (fSCA) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-bt": {"abstract": "The Landsat Top of Atmosphere Brightness Temperature (BT) product is a top of atmosphere product with radiance calculated 'at-sensor', not atmospherically corrected, and expressed in units of Kelvin.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-bt,top-of-atmosphere-brightness-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Top of Atmosphere Brightness Temperature (BT) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l1": {"abstract": "The Landsat Level-1 product is a top of atmosphere product distributed as scaled and calibrated digital numbers.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_1,LANDSAT_2,LANDSAT_3,LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-1,landsat-2,landsat-3,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l1", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-1 Product", "missionStartDate": "1972-07-25T00:00:00.000Z"}, "landsat-c2l3-ba": {"abstract": "The Landsat Burned Area (BA) contains two acquisition-based raster data products that represent burn classification and burn probability.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,burned-area,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-ba", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Burned Area (BA) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-st": {"abstract": "The Landsat Surface Temperature (ST) product represents the temperature of the Earth's surface in Kelvin (K).", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-st,surface-temperature", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Surface Temperature (ST) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-sr": {"abstract": "The Landsat Surface Reflectance (SR) product measures the fraction of incoming solar radiation that is reflected from Earth's surface to the Landsat sensor.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-sr,surface-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Surface Reflectance (SR) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l2alb-ta": {"abstract": "The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l2alb-ta,top-of-atmosphere-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-2 Albers Top of Atmosphere (TA) Reflectance Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2l3-dswe": {"abstract": "The Landsat Dynamic Surface Water Extent (DSWE) product contains six acquisition-based raster data products pertaining to the existence and condition of surface water.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,dynamic-surface-water-extent-,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2l3-dswe", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Level-3 Dynamic Surface Water Extent (DSWE) Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}, "landsat-c2ard-ta": {"abstract": "The Landsat Top of Atmosphere (TA) Reflectance product applies per pixel angle band corrections to the Level-1 radiance product.", "instrument": null, "platform": null, "platformSerialIdentifier": "LANDSAT_4,LANDSAT_5,LANDSAT_7,LANDSAT_8,LANDSAT_9", "processingLevel": null, "keywords": "analysis-ready-data,landsat,landsat-4,landsat-5,landsat-7,landsat-8,landsat-9,landsat-c2ard-ta,top-of-atmosphere-reflectance", "license": "https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat_Data_Policy.pdf", "title": "Landsat Collection 2 Analysis Ready Data (ARD) Level-2 UTM Top of Atmosphere (TA) Reflectance Product", "missionStartDate": "1982-08-22T00:00:00.000Z"}}}} diff --git a/eodag/resources/providers.yml b/eodag/resources/providers.yml index d26d0672b..f124bba3f 100644 --- a/eodag/resources/providers.yml +++ b/eodag/resources/providers.yml @@ -625,6 +625,9 @@ # Custom parameters (not defined in the base document referenced above) id: '$.properties.productIdentifier' + tileIdentifier: + - 'location=T{tileIdentifier#replace_str(r"^T(.*)$",r"\1")}' + - '{$.properties.location#replace_str(r"^T(.*)$",r"\1")}' # The geographic extent of the product geometry: - 'geometry={geometry#to_rounded_wkt}' @@ -811,6 +814,9 @@ id: - 'productIdentifier={id#remove_extension}' - '$.properties.productIdentifier' + tileIdentifier: + - 'tileid' + - '$.properties.mgrs' # The geographic extent of the product geometry: - 'geometry={geometry#to_rounded_wkt}' @@ -905,6 +911,7 @@ - "Attributes/OData.CSC.DoubleAttribute/any(att:att/Name eq 'cloudCover' and att/OData.CSC.DoubleAttribute/Value le {cloudCover})" - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'operationalMode' and att/OData.CSC.StringAttribute/Value eq '{sensorMode}')" - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'polarisationChannels' and att/OData.CSC.StringAttribute/Value eq '{polarizationChannels}')" + - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'tileId' and att/OData.CSC.StringAttribute/Value eq '{tileIdentifier}')" - 'ContentDate/Start gt {startTimeFromAscendingNode#to_iso_utc_datetime}' - 'ContentDate/End lt {completionTimeFromAscendingNode#to_iso_utc_datetime}' - contains(Name,'{id}') @@ -999,6 +1006,9 @@ id: - null - '{$.Name#remove_extension}' + tileIdentifier: + - null + - '$.Attributes.tileId' # The geographic extent of the product geometry: - null @@ -1331,6 +1341,9 @@ id: - 'uid={id#remove_extension}' - 'dc:identifier/text()' + tileIdentifier: + - 'tileIdentifier' + - 'DIAS:tileIdentifier/text()' # The geographic extent of the product geometry: - 'geometry={geometry#to_rounded_wkt}' @@ -1605,6 +1618,7 @@ - 'processingBaseline:{productVersion}' - 'generalQualityFlag:{productQualityStatus}' - 'sensorOperationalMode:{sensorMode}' + - 'tileIdentifier:{tileIdentifier}' discover_metadata: auto_discovery: true metadata_pattern: '^[a-zA-Z0-9]+$' @@ -1690,6 +1704,9 @@ id: - null - '{$.Metadata.filename#remove_extension}' + tileIdentifier: + - null + - '$.Metadata.tileIdentifier' # The geographic extent of the product geometry: - null @@ -2027,6 +2044,19 @@ # say the max is 10_000. In practice a too high number (e.g. 5_000) returns a 502 error ({"message": "Internal server error"}). # Let's set it to a more robust number: 500 max_items_per_page: 500 + metadata_mapping: + utmZone: + - '{{"query":{{"sentinel:utm_zone":{{"eq":"{utmZone}"}}}}}}' + - '$.properties."sentinel:utm_zone"' + latitudeBand: + - '{{"query":{{"sentinel:latitude_band":{{"eq":"{latitudeBand}"}}}}}}' + - '$.properties."sentinel:latitude_band"' + gridSquare: + - '{{"query":{{"sentinel:grid_square":{{"eq":"{gridSquare}"}}}}}}' + - '$.properties."sentinel:grid_square"' + tileIdentifier: + - '{{"query":{{"sentinel:utm_zone":{{"eq":"{tileIdentifier#slice_str(0,2,1)}"}},"sentinel:latitude_band":{{"eq":"{tileIdentifier#slice_str(2,3,1)}"}},"sentinel:grid_square":{{"eq":"{tileIdentifier#slice_str(3,5,1)}"}}}}}}' + - '{utmZone}{latitudeBand}{gridSquare}' products: S2_MSI_L1C: productType: sentinel-s2-l1c @@ -2038,6 +2068,18 @@ $.properties."sentinel:product_id".`sub(/([S2AB]{3})_MSIL1C_([0-9]{4})([0-9]{2})([0-9]{2})(T.*)/, products!\\2!\\3!\\4!\\1_MSIL1C_\\2\\3\\4\\5)`.`sub(/!0*/, /)` tilePath: | $.assets.info.href.`sub(/.*/sentinel-s2-l1c\/(tiles\/.*)\/tileInfo\.json/, \\1)` + utmZone: + - '{{"query":{{"mgrs:utm_zone":{{"eq":"{utmZone}"}}}}}}' + - '$.properties."mgrs:utm_zone"' + latitudeBand: + - '{{"query":{{"mgrs:latitude_band":{{"eq":"{latitudeBand}"}}}}}}' + - '$.properties."mgrs:latitude_band"' + gridSquare: + - '{{"query":{{"mgrs:grid_square":{{"eq":"{gridSquare}"}}}}}}' + - '$.properties."mgrs:grid_square"' + tileIdentifier: + - '{{"query":{{"mgrs:utm_zone":{{"eq":"{tileIdentifier#slice_str(0,2,1)}"}},"mgrs:latitude_band":{{"eq":"{tileIdentifier#slice_str(2,3,1)}"}},"mgrs:grid_square":{{"eq":"{tileIdentifier#slice_str(3,5,1)}"}}}}}}' + - '{utmZone}{latitudeBand}{gridSquare}' S2_MSI_L2A: productType: sentinel-s2-l2a metadata_mapping: @@ -2078,7 +2120,7 @@ priority: 0 roles: - host - description: Earth Search + description: Earth Search with Cloud Optimized GeoTIFF (COG) formatted assets url: https://www.element84.com/earth-search/ search: !plugin type: StacSearch @@ -2945,6 +2987,7 @@ !provider name: sara priority: 0 + description: Sentinel Australasia Regional Access search: !plugin type: QueryStringSearch # The endpoint is based off of the collection. There is a generic endpoint, @@ -3293,7 +3336,7 @@ !provider name: cop_dataspace priority: 0 - description: Copernicus Data Space + description: Copernicus Data Space Ecosystem roles: - host url: https://dataspace.copernicus.eu/ @@ -3331,6 +3374,7 @@ - "Attributes/OData.CSC.DoubleAttribute/any(att:att/Name eq 'cloudCover' and att/OData.CSC.DoubleAttribute/Value le {cloudCover})" - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'operationalMode' and att/OData.CSC.StringAttribute/Value eq '{sensorMode}')" - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'polarisationChannels' and att/OData.CSC.StringAttribute/Value eq '{polarizationChannels}')" + - "Attributes/OData.CSC.StringAttribute/any(att:att/Name eq 'tileId' and att/OData.CSC.StringAttribute/Value eq '{tileIdentifier}')" - 'ContentDate/Start gt {startTimeFromAscendingNode#to_iso_utc_datetime}' - 'ContentDate/End lt {completionTimeFromAscendingNode#to_iso_utc_datetime}' - contains(Name,'{id}') @@ -3408,6 +3452,9 @@ id: - null - '{$.Name#remove_extension}' + tileIdentifier: + - null + - '$.Attributes.tileId' # The geographic extent of the product geometry: - null @@ -3617,14 +3664,18 @@ priority: 0 roles: - host - description: Planetary Computer - url: https://planetarycomputer.microsoft.com + description: Microsoft Planetary Computer + url: https://planetarycomputer.microsoft.com search: !plugin type: StacSearch api_endpoint: https://planetarycomputer.microsoft.com/api/stac/v1/search need_auth: false pagination: max_items_per_page: 1000 + metadata_mapping: + tileIdentifier: + - '{{"query":{{"s2:mgrs_tile":{{"eq":"{tileIdentifier}"}}}}}}' + - '$.properties."s2:mgrs_tile"' products: S1_SAR_GRD: productType: sentinel-1-grd @@ -3651,3 +3702,37 @@ signed_url_key: href headers: Ocp-Apim-Subscription-Key: "{apikey}" +--- +!provider + name: hydroweb_next + priority: 0 + roles: + - host + description: hydroweb.next thematic hub for hydrology data access + url: https://hydroweb.next.theia-land.fr + search: !plugin + type: StacSearch + api_endpoint: https://hydroweb.next.theia-land.fr/api/v1/rs-catalog/stac/search + need_auth: true + auth_error_code: 401 + pagination: + max_items_per_page: 10_000 + metadata_mapping: + startTimeFromAscendingNode: + - '{{"query":{{"end_datetime":{{"gte":"{startTimeFromAscendingNode#to_iso_utc_datetime}"}}}}}}' + - '$.properties.start_datetime' + completionTimeFromAscendingNode: + - '{{"query":{{"start_datetime":{{"lte":"{completionTimeFromAscendingNode#to_iso_utc_datetime}"}}}}}}' + - '$.properties.end_datetime' + products: + GENERIC_PRODUCT_TYPE: + productType: '{productType}' + download: !plugin + type: HTTPDownload + base_uri: https://hydroweb.next.theia-land.fr + flatten_top_dirs: true + auth_error_code: 401 + auth: !plugin + type: HTTPHeaderAuth + headers: + X-API-Key: "{apikey}" diff --git a/eodag/resources/stac.yml b/eodag/resources/stac.yml index 323ae4c77..55508c253 100644 --- a/eodag/resources/stac.yml +++ b/eodag/resources/stac.yml @@ -17,7 +17,7 @@ # limitations under the License. stac_version: 1.0.0 -stac_api_version: 1.0.0-beta.3 +stac_api_version: 1.0.0-rc.3 # Capabilities ---------------------------------------------------------------- @@ -53,10 +53,10 @@ landing_page: # http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_declaration_of_conformance_classes conformance: conformsTo: - - https://api.stacspec.org/v1.0.0-beta.3/core - - https://api.stacspec.org/v1.0.0-beta.3/item-search - - https://api.stacspec.org/v1.0.0-beta.3/ogcapi-features - - https://api.stacspec.org/v1.0.0-beta.3/collections + - https://api.stacspec.org/v1.0.0-rc.3/core + - https://api.stacspec.org/v1.0.0-rc.3/item-search + - https://api.stacspec.org/v1.0.0-rc.3/ogcapi-features + - https://api.stacspec.org/v1.0.0-rc.3/collections - http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core - http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30 - http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson @@ -316,15 +316,15 @@ catalogs: child_key: year model: id: year - title: year - # description: "Filter by year" + title: "{parent_catalog[title]} / year" + description: "{parent_catalog[description]}\n\n- Filter by year" year: parent_key: years_list model: id: "{date[year]}" - title: "{date[year]}" - description: "Filter by year" + title: "{catalog[title]}: {date[year]}" + description: "{catalog[description]}: {date[year]};" extent: spatial: bbox: @@ -342,15 +342,15 @@ catalogs: parent_key: year model: id: month - title: month - description: "Filter by month" + title: "{parent_catalog[title]} / month" + description: "{parent_catalog[description]}\n\n- Filter by month" month: parent_key: months_list model: id: "{date[month]}" - title: "{date[month]}" - description: "Filter by month" + title: "{catalog[title]}: {date[month]}" + description: "{catalog[description]}: {date[month]};" extent: spatial: bbox: @@ -368,15 +368,15 @@ catalogs: parent_key: month model: id: day - title: day - description: "Filter by day" + title: "{parent_catalog[title]} / day" + description: "{parent_catalog[description]}\n\n- Filter by day" day: parent_key: days_list model: id: "{date[day]}" - title: "{date[day]}" - description: "Filter by day" + title: "{catalog[title]}: {date[day]}" + description: "{catalog[description]}: {date[day]};" extent: spatial: bbox: @@ -393,15 +393,15 @@ catalogs: child_key: cloud_cover model: id: cloud_cover - title: Max cloud cover - description: "Filter by maximum cloud cover %" + title: "{parent_catalog[title]} / Max cloud cover" + description: "{parent_catalog[description]}\n\n- Filter by maximum cloud cover %" cloud_cover: parent_key: cloud_covers_list model: id: "{cloud_cover}" - title: "{cloud_cover}%" - description: "Filter by maximum cloud cover %" + title: "{catalog[title]}: {cloud_cover}%" + description: "{catalog[description]}: {cloud_cover}%;" locations_catalogs: @@ -417,16 +417,17 @@ locations_catalogs: attr: "$.shp_location.parent.attr" model: id: "$.shp_location.name" - title: "$.shp_location.name" - description: "$.shp_location.description" + self_title: "$.shp_location.name" + title: "{parent_catalog[title]} / {catalog[self_title]}" + description: "{parent_catalog[description]}\n\n- Filter by {catalog[self_title]}" location: catalog_type: location parent_key: "{locations_list}" model: id: "{feature[id]}" - title: "{feature[id]}" - description: "Filter by country" + title: "{catalog[title]}: {feature[id]}" + description: "{catalog[description]}: {feature[id]};" extent: spatial: bbox: '{feature[geometry]#to_bounds_lists}' diff --git a/eodag/resources/user_conf_template.yml b/eodag/resources/user_conf_template.yml index d992f98f4..6d7dfcc40 100644 --- a/eodag/resources/user_conf_template.yml +++ b/eodag/resources/user_conf_template.yml @@ -190,3 +190,11 @@ planetary_computer: apikey: download: outputs_prefix: +hydroweb_next: + priority: # Lower value means lower priority (Default: 0) + search: # Search parameters configuration + auth: + credentials: + apikey: + download: + outputs_prefix: diff --git a/eodag/rest/stac.py b/eodag/rest/stac.py index a833522f7..850b7d299 100644 --- a/eodag/rest/stac.py +++ b/eodag/rest/stac.py @@ -108,15 +108,6 @@ def update_data(self, data): self.data, lambda k, v: str(v) if k in ["title", "id"] else v ) - # remove \n in descriptions - try: - self.data = dict_items_recursive_apply( - self.data, - lambda k, v: v.replace("\n", " ") if k == "description" else v, - ) - except AttributeError as e: - logger.warning("Could not format description = %s" % e) - # empty stac_extensions: "" to [] if not self.data.get("stac_extensions", True): self.data["stac_extensions"] = [] @@ -377,7 +368,7 @@ def __filter_item_model_properties(self, item_model, product_type): result_item_model["properties"]["oseo:" + k] = string_to_jsonpath(k, v) # Filter out unneeded extensions - if product_type_dict["sensorType"] != "RADAR": + if product_type_dict.get("sensorType", "RADAR") != "RADAR": result_item_model["stac_extensions"].remove( self.stac_config["stac_extensions"]["sar"] ) @@ -700,6 +691,8 @@ def __update_data_from_catalog_config(self, catalog_config): format_args["catalog"] = defaultdict( str, dict(model, **{"root": self.root, "url": self.url}) ) + # use existing data as parent_catalog + format_args["parent_catalog"] = defaultdict(str, **self.data) parsed_model = format_dict_items(self.catalog_config["model"], **format_args) self.update_data(parsed_model) @@ -978,7 +971,7 @@ def set_stac_cloud_cover_by_id(self, cloud_cover, **kwargs): self.update_data(parsed_dict) # update search args - self.search_args.update({"cloudCover": cloud_cover}) + self.search_args.update({"query": {"eo:cloud_cover": {"lte": cloud_cover}}}) return parsed_dict diff --git a/eodag/rest/utils.py b/eodag/rest/utils.py index d8205356d..301f1b5cb 100644 --- a/eodag/rest/utils.py +++ b/eodag/rest/utils.py @@ -4,6 +4,7 @@ import ast import datetime +import logging import os import re from collections import namedtuple @@ -29,6 +30,8 @@ ValidationError, ) +logger = logging.getLogger("eodag.rest.utils") + eodag_api = eodag.EODataAccessGateway() Cruncher = namedtuple("Cruncher", ["clazz", "config_params"]) crunchers = { @@ -648,13 +651,13 @@ def search_stac_items(url, arguments, root="/", catalogs=[], provider=None): raise ValidationError("Collections argument type should be Array") result_catalog = StacCatalog( - url=catalog_url, stac_config=stac_config, root=root, provider=provider, eodag_api=eodag_api, # handle only one collection per request (STAC allows multiple) catalogs=collections[0:1], + url=catalog_url.replace("/search", f"/collections/{collections[0]}"), ) arguments.pop("collections") else: @@ -689,11 +692,59 @@ def search_stac_items(url, arguments, root="/", catalogs=[], provider=None): arguments["dtstart"], arguments["dtend"] = dtime_split[0:1] * 2 arguments.pop("datetime") + search_products_arguments = dict( + arguments, **result_catalog.search_args, **{"unserialized": "true"} + ) + + # check if time filtering appears twice + if set(["dtstart", "dtend"]) <= set(arguments.keys()) and set( + ["dtstart", "dtend"] + ) <= set(result_catalog.search_args.keys()): + search_date_min = dateutil.parser.parse(arguments["dtstart"]) + search_date_max = dateutil.parser.parse(arguments["dtend"]) + catalog_date_min = dateutil.parser.parse(result_catalog.search_args["dtstart"]) + catalog_date_max = dateutil.parser.parse(result_catalog.search_args["dtend"]) + # check if date intervals overlap + if (search_date_min <= catalog_date_max) and ( + search_date_max >= catalog_date_min + ): + # use intersection + search_products_arguments["dtstart"] = ( + max(search_date_min, catalog_date_min).isoformat().replace("+00:00", "") + + "Z" + ) + search_products_arguments["dtend"] = ( + min(search_date_max, catalog_date_max).isoformat().replace("+00:00", "") + + "Z" + ) + else: + logger.warning("Time intervals do not overlap") + # return empty results + search_results = SearchResult([]) + search_results.properties = { + "page": search_products_arguments.get("page", 1), + "itemsPerPage": search_products_arguments.get( + "itemsPerPage", DEFAULT_ITEMS_PER_PAGE + ), + "totalResults": 0, + } + return StacItem( + url=url, + stac_config=stac_config, + provider=provider, + eodag_api=eodag_api, + root=root, + ).get_stac_items( + search_results=search_results, + catalog=dict( + result_catalog.get_stac_catalog(), + **{"url": result_catalog.url, "root": result_catalog.root}, + ), + ) + search_results = search_products( product_type=result_catalog.search_args["product_type"], - arguments=dict( - arguments, **result_catalog.search_args, **{"unserialized": "true"} - ), + arguments=search_products_arguments, ) return StacItem( diff --git a/pyproject.toml b/pyproject.toml index 7e2129171..15c4a0c72 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,4 +3,4 @@ requires = ["setuptools>=45", "setuptools_scm[toml]>=6.2"] build-backend = "setuptools.build_meta" [tool.setuptools_scm] -fallback_version = "2.9.3.dev0" +fallback_version = "2.10.1.dev0" diff --git a/setup.cfg b/setup.cfg index b2b2e39b7..d68277712 100644 --- a/setup.cfg +++ b/setup.cfg @@ -4,7 +4,7 @@ description = Earth Observation Data Access Gateway long_description = file:README.rst long_description_content_type = text/x-rst author = CS GROUP - France (CSSI) -author_email = admin@geostorm.eu +author_email = eodag@csgroup.space url = https://github.com/CS-SI/eodag license = Apache 2.0 license_file = LICENSE diff --git a/tests/context.py b/tests/context.py index 1e5b12226..c320ae6e6 100644 --- a/tests/context.py +++ b/tests/context.py @@ -81,6 +81,7 @@ flatten_top_directories, deepcopy, cached_parse, + sanitize, ) from eodag.utils.exceptions import ( AddressNotFound, diff --git a/tests/resources/wrong_credentials_conf.yml b/tests/resources/wrong_credentials_conf.yml index b5b514be7..5f76d86df 100644 --- a/tests/resources/wrong_credentials_conf.yml +++ b/tests/resources/wrong_credentials_conf.yml @@ -62,3 +62,8 @@ meteoblue: auth: credentials: apikey: "wrong_apikey" + +hydroweb_next: + auth: + credentials: + apikey: "wrong_apikey" diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index ac24cf153..d86f2cd21 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -37,6 +37,7 @@ AuthenticationError, EODataAccessGateway, SearchResult, + sanitize, uri_to_path, ) @@ -117,6 +118,13 @@ "2019-03-15", [0.2563590566012408, 43.19555008715042, 2.379835675499976, 43.907759172380565], ] +HYDROWBEB_NEXT_SEARCH_ARGS = [ + "hydroweb_next", + "SWOT_L2_HR_LAKESP_PRIOR_SAMPLE_V1_2", + "2022-04-01", + "2022-04-10", + [0.2563590566012408, 43.19555008715042, 2.379835675499976, 43.907759172380565], +] MUNDI_SEARCH_ARGS = [ "mundi", "S2_MSI_L1C", @@ -428,6 +436,15 @@ def test_end_to_end_search_download_planetary_computer(self): expected_filename = "{}".format(product.properties["title"]) self.execute_download(product, expected_filename, wait_sec=20) + def test_end_to_end_search_download_hydroweb_next(self): + product = self.execute_search(*HYDROWBEB_NEXT_SEARCH_ARGS) + expected_filename = "{}".format( + sanitize(product.properties["title"]) + + "-" + + sanitize(product.properties["id"]) + ) + self.execute_download(product, expected_filename) + def test_end_to_end_search_download_creodias_noresult(self): """Requesting a page on creodias with no results must return an empty SearchResult""" # As of 2021-03-19 this search at page 1 returns 31 products, so at page 2 there @@ -539,6 +556,37 @@ def test__search_by_id_creodias(self): self.assertEqual(product.properties["id"], uid) self.assertIsNotNone(product.product_type) + def test_search_by_tile(self): + """Search by tileIdentifier should find results and correctly map found metadata""" + # providers supporting search-by-tile + supported_providers = [ + "peps", + "theia", + "mundi", + "onda", + "creodias", + "cop_dataspace", + "planetary_computer", + "earth_search", + ] + + tile_id = "53WPU" + + for provider in supported_providers: + self.eodag.set_preferred_provider(provider) + products, _ = self.eodag.search( + productType="S2_MSI_L1C", + start="2021-06-01", + end="2021-06-30", + tileIdentifier=tile_id, + ) + self.assertGreater(len(products), 0, msg=f"no result found for {provider}") + self.assertEqual( + products[0].properties["tileIdentifier"], + tile_id, + msg=f"tileIdentifier not mapped for {provider}", + ) + def test_end_to_end_search_all_mundi_default(self): # 23/03/2021: Got 16 products for this search results = self.execute_search_all(*MUNDI_SEARCH_ARGS) @@ -1028,3 +1076,17 @@ def test_end_to_end_wrong_credentials_search_meteoblue(self): ) ), ) + + def test_end_to_end_wrong_credentials_search_hydroweb_next(self): + # It should already fail while searching for the products. + self.eodag.set_preferred_provider(HYDROWBEB_NEXT_SEARCH_ARGS[0]) + with self.assertRaises(AuthenticationError): + results, _ = self.eodag.search( + raise_errors=True, + **dict( + zip( + ["productType", "start", "end", "geom"], + HYDROWBEB_NEXT_SEARCH_ARGS[1:], + ) + ), + ) diff --git a/tests/units/test_core.py b/tests/units/test_core.py index 1a3bece60..39365dd92 100644 --- a/tests/units/test_core.py +++ b/tests/units/test_core.py @@ -239,6 +239,7 @@ class TestCore(TestCoreBase): "meteoblue", "cop_dataspace", "planetary_computer", + "hydroweb_next", ], } SUPPORTED_PROVIDERS = [ @@ -261,6 +262,7 @@ class TestCore(TestCoreBase): "meteoblue", "cop_dataspace", "planetary_computer", + "hydroweb_next", ] def setUp(self): @@ -1157,6 +1159,10 @@ def test_guess_product_type_with_kwargs(self): ] self.assertEqual(actual, expected) + # with product type specified + actual = self.dag.guess_product_type(productType="foo") + self.assertEqual(actual, ["foo"]) + def test_guess_product_type_without_kwargs(self): """guess_product_type must raise an exception when no kwargs are provided""" with self.assertRaises(NoMatchingProductType): @@ -1380,14 +1386,50 @@ def test__prepare_search_unknown_product_type(self, mock_fetch_product_types_lis self.dag._prepare_search(product_type="foo") mock_fetch_product_types_list.assert_called_once_with(self.dag) - @mock.patch("eodag.plugins.manager.PluginManager.get_search_plugins", autospec=True) - def test__search_by_id(self, mock_get_search_plugins): - """_search_by_id must filter search plugins using given kwargs""" - self.dag._search_by_id(uid="foo", productType="bar", provider="baz") + @mock.patch( + "eodag.api.core.EODataAccessGateway._do_search", + autospec=True, + return_value=([mock.Mock()], 1), + ) + @mock.patch("eodag.plugins.manager.PluginManager.get_auth_plugin", autospec=True) + @mock.patch( + "eodag.plugins.manager.PluginManager.get_search_plugins", + autospec=True, + return_value=[mock.Mock()], + ) + def test__search_by_id( + self, mock_get_search_plugins, mock_get_auth_plugin, mock__do_search + ): + """_search_by_id must filter search plugins using given kwargs, clear plugin and perform search""" + + found = self.dag._search_by_id(uid="foo", productType="bar", provider="baz") + + # get_search_plugins mock_get_search_plugins.assert_called_once_with( self.dag._plugins_manager, product_type="bar", provider="baz" ) + # search plugin clear + mock_get_search_plugins.return_value[0].clear.assert_called_once() + + # _do_search returns 1 product + mock__do_search.assert_called_once_with( + self.dag, + mock_get_search_plugins.return_value[0], + auth=mock_get_auth_plugin.return_value, + id="foo", + productType="bar", + ) + self.assertEqual(found, mock__do_search.return_value) + + mock__do_search.reset_mock() + # return None if more than 1 product is found + mock__do_search.return_value = ([mock.Mock(), mock.Mock()], 2) + with self.assertLogs(level="INFO") as cm: + found = self.dag._search_by_id(uid="foo", productType="bar", provider="baz") + self.assertEqual(found, (SearchResult([]), 0)) + self.assertIn("Several products found for this id", str(cm.output)) + @mock.patch("eodag.plugins.search.qssearch.QueryStringSearch", autospec=True) def test__do_search_support_itemsperpage_higher_than_maximum(self, search_plugin): """_do_search must create a count query by default""" diff --git a/tests/units/test_http_server.py b/tests/units/test_http_server.py index 77fa4782b..4006e255c 100644 --- a/tests/units/test_http_server.py +++ b/tests/units/test_http_server.py @@ -23,6 +23,7 @@ from tempfile import TemporaryDirectory import geojson +from shapely import box from tests import mock from tests.context import DEFAULT_ITEMS_PER_PAGE, SearchResult @@ -151,17 +152,98 @@ def test_route(self): ], "type": "Polygon", }, - } + }, + { + "properties": { + "snowCover": None, + "resolution": None, + "completionTimeFromAscendingNode": "2018-02-17T00:12:14" + ".035Z", + "keyword": {}, + "productType": "OCN", + "downloadLink": ( + "https://peps.cnes.fr/resto/collections/S1/" + "578f1768-e66e-5b86-9363-b19f8931cc7c/download" + ), + "eodag_provider": "peps", + "eodag_product_type": "S1_SAR_OCN", + "platformSerialIdentifier": "S1A", + "cloudCover": 0, + "title": "S1A_WV_OCN__2SSV_20180216T235323_" + "20180217T001213_020624_023501_0FD3", + "orbitNumber": 20624, + "instrument": "SAR-C SAR", + "abstract": None, + "eodag_search_intersection": { + "coordinates": [ + [ + [89.590721, 2.614019], + [89.771805, 2.575546], + [89.809341, 2.756323], + [89.628258, 2.794767], + [89.590721, 2.614019], + ] + ], + "type": "Polygon", + }, + "organisationName": None, + "startTimeFromAscendingNode": "2018-02-16T23:53:22" + ".871Z", + "platform": None, + "sensorType": None, + "processingLevel": None, + "orbitType": None, + "topicCategory": None, + "orbitDirection": None, + "parentIdentifier": None, + "sensorMode": None, + "quicklook": None, + }, + "id": "578f1768-e66e-5b86-9363-b19f8931cc7c", + "type": "Feature", + "geometry": { + "coordinates": [ + [ + [89.590721, 2.614019], + [89.771805, 2.575546], + [89.809341, 2.756323], + [89.628258, 2.794767], + [89.590721, 2.614019], + ] + ], + "type": "Polygon", + }, + }, ], "type": "FeatureCollection", } ), - 1, + 2, ), ) - def _request_valid(self, url, _): - response = self.app.get(url, follow_redirects=True) + def _request_valid( + self, + url, + mock_search, + expected_search_kwargs=None, + protocol="GET", + post_data=None, + ): + if protocol == "GET": + response = self.app.get(url, follow_redirects=True) + else: + response = self.app.post( + url, + data=json.dumps(post_data), + follow_redirects=True, + mimetype="application/json", + ) + + if expected_search_kwargs is not None: + mock_search.assert_called_once_with(**expected_search_kwargs) + self.assertEqual(200, response.status_code) + # Assert response format is GeoJSON return geojson.loads(response.data.decode("utf-8")) @@ -182,22 +264,35 @@ def _request_not_found(self, url): self.assertIn("not found", response_content["error"]) def test_request_params(self): + self._request_not_valid(f"search?collections={self.tested_product_type}&bbox=1") self._request_not_valid( - "search?collections={}&bbox=1".format(self.tested_product_type) + f"search?collections={self.tested_product_type}&bbox=0,43,1" ) self._request_not_valid( - "search?collections={}&bbox=0,43,1".format(self.tested_product_type) + f"search?collections={self.tested_product_type}&bbox=0,,1" ) self._request_not_valid( - "search?collections={}&bbox=0,,1".format(self.tested_product_type) - ) - self._request_not_valid( - "search?collections={}&bbox=a,43,1,44".format(self.tested_product_type) + f"search?collections={self.tested_product_type}&bbox=a,43,1,44" ) - self._request_valid("search?collections={}".format(self.tested_product_type)) self._request_valid( - "search?collections={}&bbox=0,43,1,44".format(self.tested_product_type) + f"search?collections={self.tested_product_type}", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + ), + ) + self._request_valid( + f"search?collections={self.tested_product_type}&bbox=0,43,1,44", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + geom=box(0, 43, 1, 44, ccw=False), + ), ) def test_not_found(self): @@ -205,76 +300,148 @@ def test_not_found(self): self._request_not_found("search?collections=ZZZ&bbox=0,43,1,44") def test_filter(self): + """latestIntersect filter should only keep the latest products once search area is fully covered""" result1 = self._request_valid( - "search?collections={}&bbox=0,43,1,44".format(self.tested_product_type) + f"search?collections={self.tested_product_type}&bbox=89.65,2.65,89.7,2.7", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + geom=box(89.65, 2.65, 89.7, 2.7, ccw=False), + ), ) + self.assertEqual(len(result1.features), 2) result2 = self._request_valid( - "search?collections={}&bbox=0,43,1,44&filter=latestIntersect".format( - self.tested_product_type - ) + f"search?collections={self.tested_product_type}&bbox=89.65,2.65,89.7,2.7&filter=latestIntersect", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + geom=box(89.65, 2.65, 89.7, 2.7, ccw=False), + ), ) - self.assertGreaterEqual(len(result1.features), len(result2.features)) + # only one product is returned with filter=latestIntersect + self.assertEqual(len(result2.features), 1) def test_date_search(self): - result1 = self._request_valid( - "search?collections={}&bbox=0,43,1,44".format(self.tested_product_type) - ) - result2 = self._request_valid( - "search?collections={}&bbox=0,43,1,44&datetime=2018-01-20/2018-01-25".format( - self.tested_product_type - ) + self._request_valid( + f"search?collections={self.tested_product_type}&bbox=0,43,1,44&datetime=2018-01-20/2018-01-25", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + start="2018-01-20T00:00:00", + end="2018-01-25T00:00:00", + geom=box(0, 43, 1, 44, ccw=False), + ), ) - self.assertGreaterEqual(len(result1.features), len(result2.features)) def test_date_search_from_items(self): - result1 = self._request_valid( - "collections/{}/items?bbox=0,43,1,44".format(self.tested_product_type) + self._request_valid( + f"collections/{self.tested_product_type}/items?bbox=0,43,1,44", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + geom=box(0, 43, 1, 44, ccw=False), + ), ) - result2 = self._request_valid( - "collections/{}/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25".format( - self.tested_product_type - ) + self._request_valid( + f"collections/{self.tested_product_type}/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + start="2018-01-20T00:00:00", + end="2018-01-25T00:00:00", + geom=box(0, 43, 1, 44, ccw=False), + ), ) - self.assertGreaterEqual(len(result1.features), len(result2.features)) def test_date_search_from_catalog_items(self): - result1 = self._request_valid( - "{}/year/2018/month/01/items?bbox=0,43,1,44".format( - self.tested_product_type - ) + results = self._request_valid( + f"{self.tested_product_type}/year/2018/month/01/items?bbox=0,43,1,44", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + start="2018-01-01T00:00:00", + end="2018-02-01T00:00:00", + geom=box(0, 43, 1, 44, ccw=False), + ), ) - result2 = self._request_valid( - "{}/year/2018/month/01/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25".format( - self.tested_product_type - ) + self.assertEqual(len(results.features), 2) + + results = self._request_valid( + f"{self.tested_product_type}/year/2018/month/01/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + start="2018-01-20T00:00:00", + end="2018-01-25T00:00:00", + geom=box(0, 43, 1, 44, ccw=False), + ), + ) + self.assertEqual(len(results.features), 2) + + results = self._request_valid( + f"{self.tested_product_type}/year/2018/month/01/items?bbox=0,43,1,44&datetime=2018-01-20/2019-01-01", + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + start="2018-01-20T00:00:00", + end="2018-02-01T00:00:00", + geom=box(0, 43, 1, 44, ccw=False), + ), ) - self.assertGreaterEqual(len(result1.features), len(result2.features)) + self.assertEqual(len(results.features), 2) + + results = self._request_valid( + f"{self.tested_product_type}/year/2018/month/01/items?bbox=0,43,1,44&datetime=2019-01-01/2019-01-31", + ) + self.assertEqual(len(results.features), 0) def test_catalog_browse(self): result = self._request_valid( - "{}/year/2018/month/01/day".format(self.tested_product_type) + f"{self.tested_product_type}/year/2018/month/01/day", ) self.assertListEqual( [str(i) for i in range(1, 32)], [it["title"] for it in result.get("links", []) if it["rel"] == "child"], ) - def test_cloud_cover_search(self): - result1 = self._request_valid( - "search?collections={}&bbox=0,43,1,44".format(self.tested_product_type) - ) - result2 = self._request_valid( - "search?collections={}&bbox=0,43,1,44&cloudCover=10".format( - self.tested_product_type - ) + def test_cloud_cover_post_search(self): + self._request_valid( + "search", + protocol="POST", + post_data={ + "collections": [self.tested_product_type], + "bbox": [0, 43, 1, 44], + "query": {"eo:cloud_cover": {"lte": 10}}, + }, + expected_search_kwargs=dict( + productType=self.tested_product_type, + page=1, + items_per_page=DEFAULT_ITEMS_PER_PAGE, + raise_errors=True, + cloudCover=10, + geom=box(0, 43, 1, 44, ccw=False), + ), ) - self.assertGreaterEqual(len(result1.features), len(result2.features)) def test_search_response_contains_pagination_info(self): """Responses to valid search requests must return a geojson with pagination info in properties""" # noqa - response = self._request_valid( - "search?collections={}".format(self.tested_product_type) - ) + response = self._request_valid(f"search?collections={self.tested_product_type}") self.assertIn("numberMatched", response) self.assertIn("numberReturned", response) self.assertIn("context", response)