-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalculate.py
67 lines (57 loc) · 2.23 KB
/
Calculate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import os
import json
from tqdm import tqdm
import random
from sklearn.metrics import matthews_corrcoef
import random
from sklearn.metrics import accuracy_score, f1_score
# 设置随机种子
random.seed(42)
model_path = "/hy-tmp/Chb_Bert/output/checkpoint-2350"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# for model_name in os.listdir(model_path_dir):
ACC_classification = 0
# model_path = os.path.join(model_path_dir, model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path,attentions='True')
model.to(device)
eval_dir = './eval_data_withfake/'
for i in os.listdir(eval_dir):
if i.endswith('.json'):
with open(eval_dir+i, 'r') as file:
test_data = json.load(file)
test_data = random.sample(test_data, 200)
ACC_classification = 0
true_labels = []
predicted_labels = []
for i in tqdm(test_data, desc="Evaluating "):
true_label = i['label']
input_text = i['text']
inputs = tokenizer(
input_text,
padding="max_length",
max_length=len(input_text),
return_token_type_ids=True,
truncation=True,
return_tensors="pt"
).to(device)
output = model(**inputs)
logits = output.logits.squeeze()
logits = torch.softmax(logits, dim=-1)
label = logits.argmax(dim=-1).tolist()
true_labels.append(int(true_label))
predicted_labels.append(int(label))
# MCC
mcc = matthews_corrcoef(true_labels, predicted_labels)
# 计算准确率
accuracy = accuracy_score(true_labels, predicted_labels)
# 计算F1分数
f1 = f1_score(true_labels, predicted_labels, average='binary') # 假设是二分类任务
# print(i)
print('Accuracy on test data:', accuracy)
print('F1-score on test data:', f1)
print('MCC', mcc)
print('----------------------------------------------------')