-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
60 lines (49 loc) · 1.74 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# ezcor
A tool to perform correlation in a batch mode and return tidy result
## :star: Motivation
**Correlation analysis** is very common, here we wrap several functions for correlation analysis to help us analyze datasets such as **TCGA** (The Cancer Genome Atlas) dataset in bioinformatics
## :arrow_double_down: Installation
```{r, eval=FALSE}
if(!require("remotes")){install.packages("remotes")}
remotes::install_github("Byronxy/ezcor")
```
## :rocket: Support functions
```{r, eval=FALSE}
ezcor() ##run basic correlation
ezcor_batch() ##run basic correlation in a batch mode
ezcor_bicor() ##run WCGAA Biweight Midcorrelation correlation
ezcor_bicor_batch() ##run WCGAA Biweight Midcorrelation correlation in a batch mode
ezcor_partial_cor() ##run partial correlation
ezcor_partial_cor_batch() ##run partial correlation in a batch mode
```
## :sunny: Examples
We select HALLMARK_HYPOXIA pathway genes from TCGA pan-cancer dataset to illustrate examples
```{r}
data("exprSet", package = "ezcor", envir = environment())
exprSet[1:5,1:5]
g1 <- colnames(exprSet)[3]
g2 <- colnames(exprSet)[4]
res <- ezcor::ezcor(data= exprSet,
split = TRUE,
split_var = "tissue",
var1 = g1,
var2 = g2,
cor_method = "spearman",
adjust_method = "none",
sig_label = TRUE,
verbose = TRUE)
head(res)
```
## :writing_hand: Author
* [Yi Xiong](https://github.com/Byronxy)
* [Shixiang Wang](https://github.com/ShixiangWang)