-
Notifications
You must be signed in to change notification settings - Fork 2
/
helper_code.py
262 lines (232 loc) · 7.71 KB
/
helper_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python
# Do *not* edit this script.
# These are helper functions that you can use with your code.
import os, numpy as np, scipy as sp, scipy.io, scipy.io.wavfile
# Check if a variable is a number or represents a number.
def is_number(x):
try:
float(x)
return True
except (ValueError, TypeError):
return False
# Check if a variable is an integer or represents an integer.
def is_integer(x):
if is_number(x):
return float(x).is_integer()
else:
return False
# Check if a variable is a a finite number or represents a finite number.
def is_finite_number(x):
if is_number(x):
return np.isfinite(float(x))
else:
return False
# Compare normalized strings.
def compare_strings(x, y):
try:
return str(x).strip().casefold()==str(y).strip().casefold()
except AttributeError: # For Python 2.x compatibility
return str(x).strip().lower()==str(y).strip().lower()
# Find patient data files.
def find_patient_files(data_folder):
# Find patient files.
filenames = list()
for f in sorted(os.listdir(data_folder)):
root, extension = os.path.splitext(f)
if not root.startswith('.') and extension=='.txt':
filename = os.path.join(data_folder, f)
filenames.append(filename)
# To help with debugging, sort numerically if the filenames are integers.
roots = [os.path.split(filename)[1][:-4] for filename in filenames]
if all(is_integer(root) for root in roots):
filenames = sorted(filenames, key=lambda filename: int(os.path.split(filename)[1][:-4]))
return filenames
# Load patient data as a string.
def load_patient_data(filename):
with open(filename, 'r') as f:
data = f.read()
return data
# Load a WAV file.
def load_wav_file(filename):
frequency, recording = sp.io.wavfile.read(filename)
return recording, frequency
# Load recordings.
def load_recordings(data_folder, data, get_frequencies=False):
num_locations = get_num_locations(data)
recording_information = data.split('\n')[1:num_locations+1]
recordings = list()
frequencies = list()
for i in range(num_locations):
entries = recording_information[i].split(' ')
recording_file = entries[2]
filename = os.path.join(data_folder, recording_file)
recording, frequency = load_wav_file(filename)
recordings.append(recording)
frequencies.append(frequency)
if get_frequencies:
return recordings, frequencies
else:
return recordings
# Get patient ID from patient data.
def get_patient_id(data):
patient_id = None
for i, l in enumerate(data.split('\n')):
if i==0:
try:
patient_id = l.split(' ')[0]
except:
pass
else:
break
return patient_id
# Get number of recording locations from patient data.
def get_num_locations(data):
num_locations = None
for i, l in enumerate(data.split('\n')):
if i==0:
try:
num_locations = int(l.split(' ')[1])
except:
pass
else:
break
return num_locations
# Get frequency from patient data.
def get_frequency(data):
frequency = None
for i, l in enumerate(data.split('\n')):
if i==0:
try:
frequency = float(l.split(' ')[2])
except:
pass
else:
break
return frequency
# Get recording locations from patient data.
def get_locations(data):
num_locations = get_num_locations(data)
locations = list()
for i, l in enumerate(data.split('\n')):
entries = l.split(' ')
if i==0:
pass
elif 1<=i<=num_locations:
locations.append(entries[0])
else:
break
return locations
# Get age from patient data.
def get_age(data):
age = None
for l in data.split('\n'):
if l.startswith('#Age:'):
try:
age = l.split(': ')[1].strip()
except:
pass
return age
# Get sex from patient data.
def get_sex(data):
sex = None
for l in data.split('\n'):
if l.startswith('#Sex:'):
try:
sex = l.split(': ')[1].strip()
except:
pass
return sex
# Get height from patient data.
def get_height(data):
height = None
for l in data.split('\n'):
if l.startswith('#Height:'):
try:
height = float(l.split(': ')[1].strip())
except:
pass
return height
# Get weight from patient data.
def get_weight(data):
weight = None
for l in data.split('\n'):
if l.startswith('#Weight:'):
try:
weight = float(l.split(': ')[1].strip())
except:
pass
return weight
# Get pregnancy status from patient data.
def get_pregnancy_status(data):
is_pregnant = None
for l in data.split('\n'):
if l.startswith('#Pregnancy status:'):
try:
is_pregnant = bool(sanitize_binary_value(l.split(': ')[1].strip()))
except:
pass
return is_pregnant
# Get murmur from patient data.
def get_murmur(data):
murmur = None
for l in data.split('\n'):
if l.startswith('#Murmur:'):
try:
murmur = l.split(': ')[1]
except:
pass
if murmur is None:
raise ValueError('No murmur available. Is your code trying to load labels from the hidden data?')
return murmur
# Get outcome from patient data.
def get_outcome(data):
outcome = None
for l in data.split('\n'):
if l.startswith('#Outcome:'):
try:
outcome = l.split(': ')[1]
except:
pass
if outcome is None:
raise ValueError('No outcome available. Is your code trying to load labels from the hidden data?')
return outcome
# Sanitize binary values from Challenge outputs.
def sanitize_binary_value(x):
x = str(x).replace('"', '').replace("'", "").strip() # Remove any quotes or invisible characters.
if (is_finite_number(x) and float(x)==1) or (x in ('True', 'true', 'T', 't')):
return 1
else:
return 0
# Santize scalar values from Challenge outputs.
def sanitize_scalar_value(x):
x = str(x).replace('"', '').replace("'", "").strip() # Remove any quotes or invisible characters.
if is_finite_number(x) or (is_number(x) and np.isinf(float(x))):
return float(x)
else:
return 0.0
# Save Challenge outputs.
def save_challenge_outputs(filename, patient_id, classes, labels, probabilities):
# Format Challenge outputs.
patient_string = '#{}'.format(patient_id)
class_string = ','.join(str(c) for c in classes)
label_string = ','.join(str(l) for l in labels)
probabilities_string = ','.join(str(p) for p in probabilities)
output_string = patient_string + '\n' + class_string + '\n' + label_string + '\n' + probabilities_string + '\n'
# Write the Challenge outputs.
with open(filename, 'w') as f:
f.write(output_string)
# Load Challenge outputs.
def load_challenge_outputs(filename):
with open(filename, 'r') as f:
for i, l in enumerate(f):
if i==0:
patient_id = l.replace('#', '').strip()
elif i==1:
classes = tuple(entry.strip() for entry in l.split(','))
elif i==2:
labels = tuple(sanitize_binary_value(entry) for entry in l.split(','))
elif i==3:
probabilities = tuple(sanitize_scalar_value(entry) for entry in l.split(','))
else:
break
return patient_id, classes, labels, probabilities