-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
176 lines (149 loc) · 6.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import yaml
import argparse
import torch
import os
import shutil
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from PIL import Image
import numpy as np
from torchvision.utils import save_image
def get_config(config):
with open(config, 'r') as content:
return yaml.load(content)
def get_arguments():
parser = argparse.ArgumentParser()
# basic setting:
parser.add_argument('--config', type=str, default='configs/textureless_COCO.yaml')
parser.add_argument('--not_cuda', action='store_true', help='disables cuda', default=0)
parser.add_argument('--manualseed', type=int, help='set seed', default=None)
parser.add_argument('--mode', help='task to be done', default='train')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', action='store_true', help='whether resume from the provided model')
parser.add_argument('--job-name', type=str, default='')
parser.add_argument('--savedir', type=str, default='', help='path to save')
parser.add_argument('--net-savedir', type=str, default='', help='path to save')
parser.add_argument('--eval', type=str, default='', help='path to evaluate the model')
parser.add_argument('--func', type=str, default='main', help='which function to be used')
parser.add_argument('--aug_num', type=int, default=100, help='number of images to be augmented in folder A')
parser.add_argument('--pretrained_path', type=str, default='', help='the path for loading encoder')
opts = parser.parse_args()
return opts
class Single_Style_data(torch.utils.data.Dataset):
def __init__(self, img_dir, transform=None, get_single_index=-1):
self.img_dir = img_dir
self.transforms = transform
self.get_single_index = get_single_index
self.names = self.get_all_img_names()
def get_all_img_names(self):
""" You should implement this method
list all self.img_dir's images, stored in self.names
and get each image' label, stored in self.labels
"""
if self.get_single_index > -1:
name = os.listdir(self.img_dir)[self.get_single_index]
else:
name = os.listdir(self.img_dir)[0]
names = []
for _ in range(len(self.transforms)):
names.append(name)
return names
def __getitem__(self, index):
name = self.names[index]
fpath = os.path.join(self.img_dir, name)
img = Image.open(fpath).convert('RGB')
if self.transforms is not None:
img = self.transforms[index](img)
return img
def __len__(self):
return len(self.names)
def get_singleM_dataloaders(config, data_dir, shuffle=False):
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
data_transforms = []
data_size = 288
num = 10
for _ in range(num - 1):
choice = np.random.randint(num)
if choice == 0:
data_transform = transforms.Compose([
transforms.RandomHorizontalFlip(p=1),
transforms.Resize([data_size, data_size]),
transforms.ToTensor(),
normalize,
])
data_transforms.append(data_transform)
elif choice == 1:
big_data_size = int(data_size * 1.1)
data_transform = transforms.Compose([
transforms.Resize([big_data_size, big_data_size]),
transforms.CenterCrop(data_size),
transforms.ToTensor(),
normalize,
])
data_transforms.append(data_transform)
else:
data_transform = transforms.Compose([
transforms.RandomResizedCrop(data_size, scale=(0.8, 1)),
transforms.ToTensor(),
normalize,
])
data_transforms.append(data_transform)
data_transform = transforms.Compose([
transforms.Resize([data_size, data_size]),
transforms.ToTensor(),
normalize,
])
data_transforms.append(data_transform)
print('Data loading: {} ...'.format(data_dir))
dataset = Single_Style_data(data_dir, transform=data_transforms)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=config['batch_size'], shuffle=shuffle, drop_last=True, num_workers=config['num_workers'])
return data_loader
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name=None, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.num_batches = num_batches
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def display_internet(self, batch, inner_it):
num_batches = self.num_batches
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
entries = [self.prefix + '[' + str(inner_it) + '/' + str(batch) + '/' + fmt.format(num_batches) + ']']
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def write_display(display_images, display_size, saveroot, epoch, it):
image_tensor = torch.cat([images[:display_size] for images in display_images], 0)
image_grid = make_grid(image_tensor.data, nrow=display_size, padding=0, normalize=True)
writepath = os.path.join(saveroot, 'epoch{}_{}.png'.format(epoch, it))
save_image(image_grid, writepath)
shutil.copyfile(writepath, os.path.join(saveroot, 'current.png'))
return True