-
Notifications
You must be signed in to change notification settings - Fork 0
/
quotation.py
264 lines (195 loc) · 8.32 KB
/
quotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import database
from datetime import datetime, timedelta
import mysql.connector
from mysql.connector import Error
import pandas as pd
import os
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
from sqlalchemy import create_engine
def getProductByCategory(connection, category:str, effectiveDate: datetime, days: int = 2) -> pd.DataFrame:
try:
cursor = connection.cursor()
# Calculate the date range
start_date = effectiveDate - timedelta(days=days)
end_date = effectiveDate
# Define the SQL query, using placeholders for parameters
query = """
SELECT *
FROM Tradeasy_quotation
WHERE category = %s
AND effectiveDate BETWEEN %s AND %s
ORDER BY effectiveDate;
"""
# Execute the query with the specified parameters
cursor.execute(query, (category, start_date, end_date))
# Fetch all the results
result = cursor.fetchall()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df
def getProductBySupplier(connection, supplier:str, effectiveDate: datetime, days: int = 2)-> pd.DataFrame:
try:
cursor = connection.cursor()
# Calculate the date range
start_date = effectiveDate - timedelta(days=days)
end_date = effectiveDate
# Define the SQL query, using placeholders for parameters
query = """
SELECT *
FROM Tradeasy_quotation
WHERE supplier = %s
AND effectiveDate BETWEEN %s AND %s
ORDER BY effectiveDate;
"""
# Execute the query with the specified parameters
cursor.execute(query, (supplier, start_date, end_date))
# Fetch all the results
result = cursor.fetchall()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
dfCol = df.columns
# Ensures products are unique and most likely effective
df_sorted = df.sort_values(by=['productTag', 'brand', 'supplier','origin', 'spec1', 'weightUnit', 'effectiveDate'])
#update with latest quotation
df_new = df_sorted.drop_duplicates(subset=['productTag', 'brand','supplier', 'origin', 'spec1', 'weightUnit'], keep='last')
df_sorted_by_price = df_new.sort_values(by='price', ascending=True)
df_new = df_sorted_by_price.drop_duplicates(subset=['productTag', 'brand', 'supplier', 'origin', 'spec1', 'weightUnit'], keep='first')
# reorganize column
df_new = df_new.sort_values(by="productTag")
df = df_new[dfCol]
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df
def getBestQuote(connection,effectiveDate: datetime, days: int = 5) -> pd.DataFrame:
try:
cursor = connection.cursor()
# Calculate the date range
start_date = effectiveDate - timedelta(days=days)
end_date = effectiveDate
# Define the SQL query, using placeholders for parameters
query = """
SELECT *
FROM Tradeasy_quotation
WHERE effectiveDate BETWEEN %s AND %s
ORDER BY effectiveDate;
"""
# Execute the query with the specified parameters
cursor.execute(query, (start_date, end_date))
# Fetch all the results
result = cursor.fetchall()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
dfCol = df.columns
# Ensures products are unique and most likely effective
df_sorted = df.sort_values(by=['productTag', 'brand', 'supplier','origin', 'spec1', 'weightUnit', 'effectiveDate'])
#update with latest quotation
df_new = df_sorted.drop_duplicates(subset=['productTag', 'brand','supplier', 'origin', 'spec1', 'weightUnit'], keep='last')
df_sorted_by_price = df_new.sort_values(by='price', ascending=True)
df_new = df_sorted_by_price.drop_duplicates(subset=['productTag', 'brand', 'supplier', 'origin', 'spec1', 'weightUnit'], keep='first')
# reorganize column
df_new = df_new.sort_values(by="productTag")
df = df_new[dfCol]
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df
def getBestQuote_SunLok(connection,effectiveDate: datetime, days: int = 30) -> pd.DataFrame:
try:
cursor = connection.cursor()
# Calculate the date range
start_date = effectiveDate - timedelta(days=days)
end_date = effectiveDate
# Define the SQL query, using placeholders for parameters
query = """
SELECT *
FROM Tradeasy_quotation
WHERE effectiveDate BETWEEN %s AND %s AND supplier = "新樂"
ORDER BY effectiveDate;
"""
# Execute the query with the specified parameters
cursor.execute(query, (start_date, end_date))
# Fetch all the results
result = cursor.fetchall()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
dfCol = df.columns
# Ensures products are unique and most likely effective
df_sorted = df.sort_values(by=['productTag', 'brand', 'supplier','origin', 'spec1', 'weightUnit', 'effectiveDate'])
#update with latest quotation
df_new = df_sorted.drop_duplicates(subset=['productTag', 'brand','supplier', 'origin', 'spec1', 'weightUnit'], keep='last')
df_sorted_by_price = df_new.sort_values(by='price', ascending=True)
df_new = df_sorted_by_price.drop_duplicates(subset=['productTag', 'brand', 'supplier', 'origin', 'spec1', 'weightUnit'], keep='first')
# reorganize column
df_new = df_new.sort_values(by="productTag")
df = df_new[dfCol]
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df
def getQuoteByID(connection, product_id) -> pd.DataFrame:
try:
cursor = connection.cursor()
# Define the SQL query, using a placeholder for the product_id parameter
query = """
SELECT *
FROM Tradeasy_quotation
WHERE product_id = %s;
"""
# Execute the query with the specified parameter
cursor.execute(query, (product_id,))
# Fetch all the results
result = cursor.fetchall()
# If result is empty, return an empty DataFrame
if not result:
return pd.DataFrame()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df
def getQuoteBySupplier(connection, supplier) -> pd.DataFrame:
try:
cursor = connection.cursor()
# Define the SQL query, using a placeholder for the product_id parameter
query = """
SELECT *
FROM Tradeasy_quotation
WHERE supplier = %s;
"""
# Execute the query with the specified parameter
cursor.execute(query, (supplier,))
# Fetch all the results
result = cursor.fetchall()
# If result is empty, return an empty DataFrame
if not result:
return pd.DataFrame()
# Convert the result to a pandas DataFrame
df = pd.DataFrame(result, columns=[i[0] for i in cursor.description])
except Error as e:
print(f"Error: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of error
finally:
if cursor is not None:
cursor.close()
return df