-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_word2vec.py
75 lines (59 loc) · 1.85 KB
/
train_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
# encoding: utf-8
from gensim.models import Word2Vec
import jieba
def get_stopWords(stopWords_fn):
with open(stopWords_fn, 'rb') as f:
stopWords_set = {line.strip('\r\t').decode('utf-8') for line in f}
return stopWords_set
def sentence2words(sentence, stopWords=False, stopWords_set=None):
"""
split a sentence into words based on jieba
"""
# seg_words is a generator
seg_words = jieba.cut(sentence)
if stopWords:
words = [word for word in seg_words if word not in stopWords_set and word != ' ']
else:
words = [word for word in seg_words]
return words
class MySentences(object):
def __init__(self, list_csv):
stopWords_fn = 'all_stopword.txt'
self.stopWords_set = get_stopWords(stopWords_fn)
with open(list_csv, 'r') as f:
self.fns = [line.strip() for line in f]
def __iter__(self):
for fn in self.fns:
with open(fn, 'r') as f:
for line in f:
yield sentence2words(line.strip(), True, self.stopWords_set)
def train_save(list_csv, model_fn):
sentences = MySentences(list_csv)
num_features = 100
min_word_count = 10
num_workers = 48
context = 20
epoch = 20
sample = 1e-5
model = Word2Vec(
sentences,
size=num_features,
min_count=min_word_count,
workers=num_workers,
sample=sample,
window=context,
iter=epoch,
)
model.save(model_fn)
return model
if __name__ == "__main__":
model = train_save('sougou_list.csv', 'word2vec_model_0925')
# get the word vector
for w in model.most_similar(u'互联网'):
print w[0], w[1]
print model.syn0.shape
print model.similarity(u'网络', u'互联网')
country_vec = model[u"国家"]
print type(country_vec)
print country_vec