-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemotions.py
128 lines (86 loc) · 4.91 KB
/
emotions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#Author- Ashish Kumar
# This is the main code for the emotion prediction based on facial feature analysis using opencv, numpy and keras.
# The code uses a model trained on 'fer2013' dataset of kaggle.
# By default it uses the laptop webcam but can be used for a video stream by giving the path.
import cv2
import numpy as np
from keras.models import load_model
from statistics import mode
from utils.datasets import get_labels
from utils.inference import detect_faces
from utils.inference import draw_text
from utils.inference import draw_bounding_box
from utils.inference import apply_offsets
from utils.inference import load_detection_model
from utils.preprocessor import preprocess_input
USE_WEBCAM = True # If false, loads video file source
# parameters for loading data and images
emotion_model_path = './models/emotion_model.hdf5'
emotion_labels = get_labels('fer2013')
# hyper-parameters for bounding boxes shape
frame_window = 10 # To be used for the mode comparison with the emotion window
emotion_offsets = (20, 40) # Hyper parameters for the bounding facial box
# loading models
face_cascade = cv2.CascadeClassifier('./models/haarcascade_frontalface_default.xml') # face detection model
emotion_classifier = load_model(emotion_model_path) # 'fer2013' dataset trained model for emotions
# getting input model shapes for inference
emotion_target_size = emotion_classifier.input_shape[1:3]
# starting lists for calculating modes
emotion_window = []
# starting video streaming
cv2.namedWindow('window_frame')
video_capture = cv2.VideoCapture(0) # 0 for default camera or source selection
# Select video or webcam feed
cap = None
if (USE_WEBCAM == True):
cap = cv2.VideoCapture(0) # Webcam source
else:
cap = cv2.VideoCapture('./demo/dinner.mp4') # Video file source
while cap.isOpened(): # True:
ret, bgr_image = cap.read()
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY) # gray image for HOGs
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # color image for video frame
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, # image scaling
minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE)
for face_coordinates in faces:
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets) # extracting faces from gray image
gray_face = gray_image[y1:y2, x1:x2] # storing faces into gray_face
try:
gray_face = cv2.resize(gray_face, (emotion_target_size)) # resizing for emotion detection
except:
continue
gray_face = preprocess_input(gray_face, True) #converting image into a float 32bit Array
gray_face = np.expand_dims(gray_face, 0) #adding 0 axis to the facial float 32-bit array
gray_face = np.expand_dims(gray_face, -1) # adding a new axis to the facial 32-bit array
emotion_prediction = emotion_classifier.predict(gray_face) # predicting the emotion
emotion_probability = np.max(emotion_prediction) # select the emotion with the maximun probability
emotion_label_arg = np.argmax(emotion_prediction) # return the index of the emotion with max probability
emotion_text = emotion_labels[emotion_label_arg] # create the emotion label with the label from the index of emotion
emotion_window.append(emotion_text) # add the label to emotion window
if len(emotion_window) > frame_window: # limiting the list to 10 items only
emotion_window.pop(0)
try:
emotion_mode = mode(emotion_window) # find the mode of the emotion window items
except:
continue
if emotion_text == 'angry': # giving the text colors with numpy (R,G,B) values
color = emotion_probability * np.asarray((255, 0, 0))
elif emotion_text == 'sad':
color = emotion_probability * np.asarray((0, 0, 255))
elif emotion_text == 'happy':
color = emotion_probability * np.asarray((255, 255, 0))
elif emotion_text == 'surprise':
color = emotion_probability * np.asarray((0, 255, 255))
else:
color = emotion_probability * np.asarray((0, 255, 0))
color = color.astype(int)
color = color.tolist()
draw_bounding_box(face_coordinates, rgb_image, color) # finally drawing the the bounding box
draw_text(face_coordinates, rgb_image, emotion_mode,
color, 0, -45, 1, 1) # adding the emotion text
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
cv2.imshow('window_frame', bgr_image)
if cv2.waitKey(1) & 0xFF == ord('q'): # exit conditions
break
cap.release()
cv2.destroyAllWindows()