-
Notifications
You must be signed in to change notification settings - Fork 18
/
draw_graphs.py
56 lines (47 loc) · 1.87 KB
/
draw_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from PIL import Image
import cv2
import os
def image_beautifier(names, final_name):
image_names = sorted(names)
images = [Image.open(x) for x in names]
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for im in images:
new_im.paste(im, (x_offset,0))
x_offset += im.size[0]
new_im.save(final_name)
img = cv2.imread(final_name)
img = cv2.resize(img, (img.shape[1]//2, img.shape[0]//2))
cv2.imwrite(final_name, img)
if __name__ == '__main__':
files = ['DBN_without_pretraining_classifier.csv', 'DBN_with_pretraining_and_input_binarization_classifier.csv', 'DBN_with_pretraining_classifier.csv', 'RBM_pretrained_classifier.csv', 'RBM_without_pretraining_classifier.csv']
for file in files:
for feature in [['test loss', 'train loss'], ['test acc', 'train acc']]:
df = pd.read_csv(file, usecols=feature)
df = df.values
name = feature[0][len('test '):]
plt.cla()
plt.plot(np.array(range(1, df.shape[0]+1)), df.T[0], label='test - '+name)
plt.plot(np.array(range(1, df.shape[0]+1)), df.T[1], label='train - '+name)
plt.legend()
plt.title(file[:-4]+'_'+name)
if name=='acc':
plt.ylim([-0.01, 1.01])
plt.savefig('./images/'+file[:-4]+'_'+name+'.jpg')
files = ['./images/'+i for i in sorted(os.listdir('./images/'))]
DBN = files[:-4]
RBM = files[-4:]
DBN_acc = [DBN[i] for i in range(0, len(DBN), 2)]
DBN_loss = [DBN[i] for i in range(1, len(DBN), 2)]
RBM_acc = [RBM[i] for i in range(0, len(RBM), 2)]
RBM_loss = [RBM[i] for i in range(1, len(RBM), 2)]
image_beautifier(DBN_acc, './images/DBN_acc.jpg')
image_beautifier(DBN_loss, './images/DBN_loss.jpg')
image_beautifier(RBM_acc, './images/RBM_acc.jpg')
image_beautifier(RBM_loss, './images/RBM_loss.jpg')