-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathsample_mean.f90
62 lines (52 loc) · 3.56 KB
/
sample_mean.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
! sample_mean.f90
! Estimates volume of polyhedron by sample mean integration
PROGRAM sample_mean
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! No parameters need be supplied by the user. The exact value of the integral is 5/3.
! For details, see Chapter 4 of the text.
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, COMPILER_VERSION, COMPILER_OPTIONS
IMPLICIT NONE
REAL :: v, f
REAL, DIMENSION(2) :: r, zeta
REAL, DIMENSION(2), PARAMETER :: r_0 = [1.0, 2.0]
REAL, PARAMETER :: a_0 = PRODUCT(r_0)
INTEGER :: tau, tau_max
WRITE ( unit=output_unit, fmt='(a)' ) 'sample_mean'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Estimates integral by sample-mean Monte Carlo'
CALL RANDOM_INIT ( .FALSE., .TRUE. ) ! Initialize random number generator
tau_max = 1000000
f = 0.0
DO tau = 1, tau_max
CALL RANDOM_NUMBER ( zeta ) ! uniform in (0,1)
r = zeta * r_0 ! uniform in xy rectangle
IF ( r(2) < 2.0-2.0*r(1) ) THEN ! in xy triangle
f = f + ( 1.0 + r(2) ) ! value of z
END IF
END DO
v = a_0 * f / REAL ( tau_max )
WRITE ( unit=output_unit, fmt='(a,f10.5)' ) 'Estimate = ', v
WRITE ( unit=output_unit, fmt='(a,f10.5)' ) 'Exact = ', 5.0/3.0
END PROGRAM sample_mean