-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmd_poly_lj_module.f90
271 lines (215 loc) · 12.7 KB
/
md_poly_lj_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
! md_poly_lj_module.f90
! Force routine for MD simulation, polyatomic molecule, LJ atoms
MODULE md_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, error_unit
IMPLICIT NONE
PRIVATE
! Public routines
PUBLIC :: introduction, conclusion, allocate_arrays, deallocate_arrays
PUBLIC :: force
! Public data
INTEGER, PUBLIC :: n ! number of molecules
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: r ! centre of mass positions (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: e ! quaternions (0:3,n)
REAL, DIMENSION(:,:,:), ALLOCATABLE, PUBLIC :: d ! bond vectors (0:3,na,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: v ! centre of mass velocities (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: ell ! angular momenta (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: f ! centre of mass forces (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: tau ! torques (3,n)
! Bond vectors in body-fixed frame (na and db are public)
! Isosceles triangle, 3 sites, with unit bond length and bond angle alpha, which we set to 75 degrees here
REAL, PARAMETER :: pi = 4.0*ATAN(1.0)
REAL, PARAMETER :: alpha = 75.0 * pi / 180.0, alpha2 = alpha / 2.0
INTEGER, PARAMETER, PUBLIC :: na = 3
REAL, DIMENSION(3,na), PARAMETER, PUBLIC :: db = RESHAPE ( [ &
& -SIN(alpha2), 0.0, -COS(alpha2)/3.0, &
& 0.0, 0.0, 2.0*COS(alpha2)/3.0, &
& SIN(alpha2), 0.0, -COS(alpha2)/3.0 ], [3,na] )
! Atomic masses and (public) moments of inertia
REAL, DIMENSION(na), PARAMETER :: m = [ 1.0/3.0, 1.0/3.0, 1.0/3.0 ] ! Masses add up to 1.0
REAL, DIMENSION(3), PUBLIC :: inertia
! Cutoff distance and force-shift parameters (all private) chosen as per the reference:
! S Mossa, E La Nave, HE Stanley, C Donati, F Sciortino, P Tartaglia, Phys Rev E, 65, 041205 (2002)
REAL, PARAMETER :: r_cut = 2.612 ! in sigma=1 units, where r_cut = 1.2616 nm, sigma = 0.483 nm
REAL, PARAMETER :: sr_cut = 1.0/r_cut, sr_cut6 = sr_cut**6, sr_cut12 = sr_cut6**2
REAL, PARAMETER :: lambda1 = 4.0*(7.0*sr_cut6-13.0*sr_cut12)
REAL, PARAMETER :: lambda2 = -24.0*(sr_cut6-2.0*sr_cut12)*sr_cut
! Public derived type
TYPE, PUBLIC :: potential_type ! A composite variable for interactions comprising
REAL :: pot ! the potential energy
REAL :: vir ! the virial and
LOGICAL :: ovr ! a flag indicating overlap (i.e. pot too high to use)
CONTAINS
PROCEDURE :: add_potential_type
GENERIC :: OPERATOR(+) => add_potential_type
END TYPE potential_type
CONTAINS
FUNCTION add_potential_type ( a, b ) RESULT (c)
IMPLICIT NONE
TYPE(potential_type) :: c ! Result is the sum of
CLASS(potential_type), INTENT(in) :: a, b ! the two inputs
c%pot = a%pot + b%pot
c%vir = a%vir + b%vir
c%ovr = a%ovr .OR. b%ovr
END FUNCTION add_potential_type
SUBROUTINE introduction
IMPLICIT NONE
INTEGER :: i
REAL :: diameter
REAL, DIMENSION(3) :: com
REAL, PARAMETER :: tol = 1.0e-9
WRITE ( unit=output_unit, fmt='(a)' ) 'Lennard-Jones potential'
WRITE ( unit=output_unit, fmt='(a)' ) 'Cut-and-force-shifted'
WRITE ( unit=output_unit, fmt='(a)' ) 'Diameter, sigma = 1'
WRITE ( unit=output_unit, fmt='(a)' ) 'Well depth, epsilon = 1'
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of atoms per molecule', na
DO i = 1, na ! Loop over atoms
WRITE ( unit=output_unit, fmt='(a,i1,t40,3f15.6)' ) 'Body-fixed atom vector ', i, db(:,i)
END DO ! End loop over atoms
diameter = 2.0 * SQRT ( MAXVAL ( SUM(db**2,dim=1) ) )
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Molecular diameter', diameter
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'r_cut', r_cut
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Force-shift lambda1', lambda1
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Force-shift lambda2', lambda2
! The following section sets the diagonal moments of inertia "realistically"
! based on the values of atomic masses and bond vectors (above), with some checking.
! However, there is nothing to stop the user replacing this section with a statement setting
! the values of inertia(1:3). The masses m are not passed back to the calling program.
! It might be advantageous, for instance, to artificially increase the values in inertia.
! Ensure that the db bonds, xyz molecular axes, and masses are chosen such that
! the total mass is 1 and the centre-of-mass is at the origin
IF ( ABS ( SUM(m) - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)') 'Molecular mass is not 1.0 ', SUM(m)
STOP 'Error in introduction'
END IF
com = SUM ( SPREAD(m,dim=1,ncopies=3)*db, dim = 2 )
IF ( ANY ( ABS(com) > tol ) ) THEN
WRITE ( unit=error_unit, fmt='(a,3f15.6)') 'Molecular centre-of-mass error', com
STOP 'Error in introduction'
END IF
! Ensure that the db bonds, xyz molecular axes, and masses are chosen such that
! the off-diagonal elements of the inertia tensor are zero
inertia(1) = -SUM ( m*db(2,:)*db(3,:) )
inertia(2) = -SUM ( m*db(3,:)*db(1,:) )
inertia(3) = -SUM ( m*db(1,:)*db(2,:) )
IF ( ANY ( ABS(inertia) > tol ) ) THEN
WRITE ( unit=error_unit, fmt='(a,3f15.6)') 'Molecular off-diagonal inertia error', inertia
STOP 'Error in introduction'
END IF
! Calculate the diagonal elements of the inertia tensor
inertia(1) = SUM ( m*db(2,:)**2 ) + SUM ( m*db(3,:)**2 )
inertia(2) = SUM ( m*db(3,:)**2 ) + SUM ( m*db(1,:)**2 )
inertia(3) = SUM ( m*db(1,:)**2 ) + SUM ( m*db(2,:)**2 )
WRITE ( unit=output_unit, fmt='(a,t40,3f15.6)' ) 'Inertia Ixx, Iyy, Izz', inertia
END SUBROUTINE introduction
SUBROUTINE conclusion
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)') 'Program ends'
END SUBROUTINE conclusion
SUBROUTINE allocate_arrays ( box )
IMPLICIT NONE
REAL, INTENT(in) :: box ! simulation box length
REAL :: rm_cut_box, diameter
ALLOCATE ( r(3,n), e(0:3,n), d(3,na,n) )
ALLOCATE ( v(3,n), ell(3,n), f(3,n), tau(3,n) )
diameter = 2.0 * SQRT ( MAXVAL ( SUM(db**2,dim=1) ) )
rm_cut_box = ( r_cut+diameter ) / box
IF ( rm_cut_box > 0.5 ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)') 'rm_cut/box too large ', rm_cut_box
STOP 'Error in allocate_arrays'
END IF
END SUBROUTINE allocate_arrays
SUBROUTINE deallocate_arrays
IMPLICIT NONE
DEALLOCATE ( r, e, d )
DEALLOCATE ( v, ell, f, tau )
END SUBROUTINE deallocate_arrays
SUBROUTINE force ( box, total )
USE maths_module, ONLY : cross_product
IMPLICIT NONE
REAL, INTENT(in) :: box ! Simulation box length
TYPE(potential_type), INTENT(out) :: total ! Composite of pot, vir, etc
! total%pot is the nonbonded cut-and-shifted potential energy for whole system
! total%vir is the corresponding virial
! total%ovr is a warning flag that there is an overlap
! This routine also calculates forces and torques
! and stores them in the arrays f, tau
! It is assumed that r has been divided by box
! The d array of space-fixed bond vectors for each molecule should be computed already
! Results are in LJ units where sigma = 1, epsilon = 1
! Note that this is the force-shifted LJ potential with a linear smoothing term
! S Mossa, E La Nave, HE Stanley, C Donati, F Sciortino, P Tartaglia, Phys Rev E, 65, 041205 (2002)
INTEGER :: i, j, a, b
REAL :: diameter, rm_cut_box, rm_cut_box_sq, r_cut_sq
REAL :: sr2, sr6, sr12, rij_sq, rab_sq, virab, rmag
REAL, DIMENSION(3) :: rij, rab, fab
REAL, PARAMETER :: sr2_ovr = 1.77 ! overlap threshold (pot > 100)
TYPE(potential_type) :: pair
diameter = 2.0 * SQRT ( MAXVAL ( SUM(db**2,dim=1) ) )
rm_cut_box = ( r_cut + diameter ) / box ! Molecular cutoff in box=1 units
rm_cut_box_sq = rm_cut_box**2 ! squared
r_cut_sq = r_cut**2 ! Potential cutoff squared in sigma=1 units
! Initialize
f = 0.0
tau = 0.0
total = potential_type ( pot=0.0, vir=0.0, ovr=.FALSE. )
DO i = 1, n - 1 ! Begin outer loop over molecules
DO j = i + 1, n ! Begin inner loop over molecules
rij(:) = r(:,i) - r(:,j) ! Centre-centre separation vector
rij(:) = rij(:) - ANINT ( rij(:) ) ! Periodic boundaries in box=1 units
rij_sq = SUM ( rij**2 ) ! Squared centre-centre separation in box=1 units
IF ( rij_sq < rm_cut_box_sq ) THEN ! Test within molecular cutoff
rij = rij * box ! Now in sigma = 1 units
! Double loop over atoms on both molecules
DO a = 1, na
DO b = 1, na
rab = rij + d(:,a,i) - d(:,b,j) ! Atom-atom vector, sigma=1 units
rab_sq = SUM ( rab**2 ) ! Squared atom-atom separation, sigma=1 units
IF ( rab_sq < r_cut_sq ) THEN ! Test within potential cutoff
sr2 = 1.0 / rab_sq ! (sigma/rab)**2
pair%ovr = sr2 > sr2_ovr ! Overlap if too close
rmag = SQRT(rab_sq)
sr6 = sr2**3
sr12 = sr6**2
pair%pot = 4.0*(sr12-sr6) + lambda1 + lambda2*rmag ! LJ atom-atom pair potential (force-shifted)
virab = 24.0*(2.0*sr12-sr6 ) - lambda2*rmag ! LJ atom-atom pair virial
fab = rab * virab * sr2 ! LJ atom-atom pair force
pair%vir = DOT_PRODUCT ( rij, fab ) ! Contribution to molecular virial
total = total + pair
f(:,i) = f(:,i) + fab
f(:,j) = f(:,j) - fab
tau(:,i) = tau(:,i) + cross_product ( d(:,a,i), fab )
tau(:,j) = tau(:,j) - cross_product ( d(:,b,j), fab )
END IF ! End test within potential cutoff
END DO
END DO
! End double loop over atoms on both molecules
END IF ! End test within molecular cutoff
END DO ! End inner loop over molecules
END DO ! End outer loop over molecules
! Include numerical factors
total%vir = total%vir / 3.0 ! Divide virial by 3
END SUBROUTINE force
END MODULE md_module