-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmd_nve_hs.f90
253 lines (197 loc) · 11.3 KB
/
md_nve_hs.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
! md_nve_hs.f90
! Molecular dynamics, NVE ensemble, hard spheres
PROGRAM md_nve_hs
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a hard-sphere configuration (positions and velocities)
! Checks for overlaps
! Conducts molecular dynamics simulation
! Uses no special neighbour lists
! ... so is restricted to small number of atoms
! Assumes that collisions can be predicted by looking at
! nearest neighbour particles in periodic boundaries
! ... so is unsuitable for low densities
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are stored divided by the box length
! However, input configuration, output configuration, most calculations, and all results
! are given in units sigma = 1, mass = 1
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE md_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& update, overlap, collide, n, r, v, coltime, partner, gt, lt
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length (in units where sigma=1)
REAL :: vir ! Total collisional virial
REAL :: kin ! Kinetic energy
REAL :: temp_kinet ! Temperature (conserved)
REAL :: dt ! Time step
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
INTEGER :: i, j, k, ncoll, col_sum, blk, stp, nblock, nstep, ioerr
REAL :: tij, t_now, vir_sum
REAL, DIMENSION(3) :: vcm
NAMELIST /nml/ nblock, nstep, dt
WRITE ( unit=output_unit, fmt='(a)' ) 'md_nve_hs'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Molecular dynamics, constant-NVE, hard spheres'
CALL introduction
! Set sensible default run parameters for testing
nblock = 10
nstep = 2000
dt = 0.05
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in md_nve_hs'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Timestep', dt
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Box (in sigma units)', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', REAL(n) / box**3
CALL allocate_arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r, v ) ! Second call gets r and v
r(:,:) = r(:,:) / box ! Convert positions to box=1 units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
vcm(:) = SUM ( v(:,:), dim=2 ) / REAL(n) ! Centre-of mass velocity
v(:,:) = v(:,:) - SPREAD ( vcm(:), dim = 2, ncopies = n ) ! Set COM velocity to zero
kin = 0.5 * SUM ( v**2 )
temp_kinet = 2.0 * kin / REAL ( 3*(n-1) )
v = v / SQRT ( temp_kinet ) ! We fix the temperature to be 1.0
kin = 0.5 * SUM ( v**2 )
temp_kinet = 2.0 * kin / REAL ( 3*(n-1) )
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature', temp_kinet
! Initial overlap check
IF ( overlap ( box ) ) THEN
WRITE ( unit=error_unit, fmt='(a)' ) 'Particle overlap in initial configuration'
STOP 'Error in md_nve_hs'
END IF
! Initial search for collision partners >i
coltime(:) = HUGE(1.0)
partner(:) = n
DO i = 1, n
CALL update ( i, box, gt )
END DO
! Initialize arrays for averaging and write column headings
col_sum = 0
vir_sum = 0.0
CALL run_begin ( calc_variables() )
ncoll = 0
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
vir_sum = 0.0 ! Zero collisional virial accumulator for this step
col_sum = 0 ! Zero collision counter for this step
t_now = 0.0 ! Keep track of time within this step
DO ! Loop over collisions within this step
i = MINLOC ( coltime, dim=1 ) ! Locate minimum collision time
j = partner(i) ! Collision partner
tij = coltime(i) ! Time to collision
IF ( t_now + tij > dt ) THEN
CALL advance ( dt - t_now ) ! Advance to end of time step
EXIT ! Exit loop over collisions
END IF
CALL advance ( tij ) ! Advance to time of next collision
CALL collide ( i, j, box, vir ) ! Compute collision dynamics
col_sum = col_sum + 1 ! Increment collision counter
vir_sum = vir_sum + vir ! Increment collisional virial accumulator
! Update collision lists
DO k = 1, n
IF ( k==i .OR. k==j .OR. partner(k) == i .OR. partner(k) == j ) THEN
CALL update ( k, box, gt ) ! Search for partners >k
END IF
END DO
CALL update ( i, box, lt ) ! Search for partners <i
CALL update ( j, box, lt ) ! Search for partners <j
END DO ! End loop over collisions within this step
ncoll = ncoll + col_sum
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r*box, v ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Total collisions', ncoll
IF ( overlap ( box ) ) STOP 'Particle overlap in final configuration'
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r*box, v )
CALL deallocate_arrays
CALL conclusion
CONTAINS
SUBROUTINE advance ( t )
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time interval over which to advance configuration
! Guard against going back in time
IF ( t < 0.0 ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,f15.6)' ) 'Negative time step', t
STOP 'Error in md_nve_hs/advance'
END IF
t_now = t_now + t ! Advance current time by t
coltime(:) = coltime(:) - t ! Reduce times to next collision by t
r(:,:) = r(:,:) + t * v(:,:) / box ! Advance all positions by t (box=1 units)
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Apply periodic boundaries
END SUBROUTINE advance
FUNCTION calc_variables ( ) RESULT ( variables )
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(2) :: variables ! The 2 variables listed below
! This routine calculates all variables of interest
! They are collected together in the variables array, for use in the main program
TYPE(variable_type) :: coll_rate, p_coll
REAL :: vol, rho
! Preliminary calculations
vol = box**3 ! Volume
rho = REAL(n) / vol ! Density
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Collision rate per particle
! We average over the time step
coll_rate = variable_type ( nam = 'Collision rate', val = 2.0*REAL(col_sum)/dt/REAL(n), instant = .FALSE. )
! Collisional pressure
! ideal + collisional virial / volume averaged over the time step
p_coll = variable_type ( nam = 'P', val = rho*temp_kinet + vir_sum/dt/vol, instant = .FALSE. )
! Collect together for averaging
variables = [ coll_rate, p_coll ]
END FUNCTION calc_variables
END PROGRAM md_nve_hs