-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmd_lj_mts.f90
335 lines (258 loc) · 15.2 KB
/
md_lj_mts.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
! md_lj_mts.f90
! Molecular dynamics, NVE, multiple timesteps
PROGRAM md_lj_mts
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atoms (positions, velocities)
! Cubic periodic boundary conditions
! Conducts molecular dynamics using velocity Verlet algorithm
! Uses no special neighbour lists, for clarity
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! This program just illustrates the idea of splitting the non-bonded interactions
! using a criterion based on distance, for use in a MTS scheme
! This would hardly ever be efficient for a simple potential of the LJ kind alone
! This program uses mass = 1 throughout
! Unlike most other example programs, positions are not divided by box length at all
! Input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! For example, for Lennard-Jones, sigma = 1, epsilon = 1
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model is defined in md_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE md_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& force, r, v, f, n, potential_type
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: dt1 ! Time step (smallest)
REAL :: lambda ! Healing length for switch function
INTEGER, PARAMETER :: k_max = 3 ! Number of shells
REAL, DIMENSION(k_max) :: r_cut ! Cutoff distance for each shell
INTEGER, DIMENSION(k_max) :: n_mts ! Successive ratios of number of steps for each shell
REAL, DIMENSION(k_max) :: dt ! Timestep for each shell
REAL, DIMENSION(k_max) :: vol_shell ! Volume of each shell
! Composite interaction = pot & cut & vir & lap & ovr variables for each shell
TYPE(potential_type), DIMENSION(k_max) :: total
INTEGER :: blk, stp1, stp2, stp3, nstep, nblock, k, ioerr
REAL, DIMENSION(3) :: vcm
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
REAL, PARAMETER :: pi = 4.0 * ATAN(1.0)
NAMELIST /nml/ nblock, nstep, r_cut, lambda, dt1, n_mts
WRITE ( unit=output_unit, fmt='(a)' ) 'md_lj_mts'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Molecular dynamics, constant-NVE ensemble, multiple time steps'
WRITE ( unit=output_unit, fmt='(a)' ) 'Particle mass=1 throughout'
CALL introduction
! Set sensible default run parameters for testing
nblock = 10
nstep = 6250
r_cut = [ 2.4, 3.5, 4.0 ]
n_mts = [ 1, 4, 2 ]
dt1 = 0.002
lambda = 0.1
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in md_lj_mts'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,*(f15.6))' ) 'Potential cutoff distances', r_cut(:)
WRITE ( unit=output_unit, fmt='(a,t40,*(i15))' ) 'Multiple step ratios', n_mts(:)
IF ( n_mts(1) /= 1 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'n_mts(1) must be 1', n_mts(1)
STOP 'Error in md_lj_mts'
END IF
IF ( ANY ( n_mts <= 0 ) ) THEN
WRITE ( unit=error_unit, fmt='(a,*(i15))' ) 'n_mts values must be positive', n_mts
STOP 'Error in md_lj_mts'
END IF
dt(1) = dt1 ! n_mts(1) equals 1
vol_shell(1) = (4.0/3.0)*pi * r_cut(1)**3
DO k = 2, k_max
dt(k) = PRODUCT(n_mts(1:k))*dt1 ! Define time steps cumulatively
IF ( r_cut(k)-r_cut(k-1) < lambda ) THEN
WRITE ( unit=error_unit, fmt='(a,3f15.6)' ) 'r_cut interval error', r_cut(k-1), r_cut(k), lambda
STOP 'Error in md_lj_mts'
END IF
vol_shell(k) = (4.0/3.0)*pi * ( r_cut(k)**3 - r_cut(k-1)**3 )
END DO
WRITE ( unit=output_unit, fmt='(a,t40,*(f15.6))' ) 'Time step for each shell', dt(:)
WRITE ( unit=output_unit, fmt='(a,t40,*(f15.6))' ) 'Volume of each shell', vol_shell(:)
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Switching length lambda', lambda
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', REAL(n) / box**3
IF ( r_cut(k_max) > box/2.0 ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)') 'r_cut(k_max) too large ', r_cut(k_max)
STOP 'Error in md_lj_mts'
END IF
CALL allocate_arrays ( r_cut )
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r, v ) ! Second call to get r and v
r(:,:) = r(:,:) - ANINT ( r(:,:) / box ) * box ! Periodic boundaries
vcm(:) = SUM ( v(:,:), dim=2 ) / REAL(n) ! Centre-of mass velocity
v(:,:) = v(:,:) - SPREAD ( vcm(:), dim = 2, ncopies = n ) ! Set COM velocity to zero
! Calculate initial forces and pot, vir contributions for each shell
DO k = 1, k_max
CALL force ( box, r_cut, lambda, k, total(k) )
IF ( total(k)%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in md_lj_mts'
END IF
END DO
! Initialize arrays for averaging and write column headings
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
! The following set of nested loops is specific to k_max=3
DO stp3 = 1, nstep ! Begin loop over steps
! Outer shell 3: a single step of size n_mts(3)*n_mts(2)*dt1
CALL kick_propagator ( 0.5*dt(3), 3 ) ! Kick half-step (outer shell)
DO stp2 = 1, n_mts(3) ! Middle shell 2: n_mts(3) steps of size n_mts(2)*dt1
CALL kick_propagator ( 0.5*dt(2), 2 ) ! Kick half-step (middle shell)
DO stp1 = 1, n_mts(2) ! Inner shell 1: n_mts(3)*n_mts(2) steps of size dt1
CALL kick_propagator ( 0.5*dt(1), 1 ) ! Kick half-step (inner shell)
CALL drift_propagator ( dt(1) ) ! Drift step
r(:,:) = r(:,:) - ANINT ( r(:,:)/box ) * box ! Periodic boundaries
CALL force ( box, r_cut, lambda, 1, total(1) )
IF ( total(1)%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in configuration'
STOP 'Error in md_lj_mts'
END IF
CALL kick_propagator ( 0.5*dt(1), 1 ) ! Kick half-step (inner shell)
END DO ! End inner shell 1
CALL force ( box, r_cut, lambda, 2, total(2) )
IF ( total(2)%ovr ) THEN ! Highly unlikely for middle shell
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in configuration'
STOP 'Highly unlikely error in md_lj_mts'
END IF
CALL kick_propagator ( 0.5*dt(2), 2 ) ! Kick half-step (middle shell)
END DO ! End middle shell 2
CALL force ( box, r_cut, lambda, 3, total(3) )
IF ( total(3)%ovr ) THEN ! Extremely unlikely for outer shell
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in configuration'
STOP 'Extremely unlikely error in md_lj_mts'
END IF
CALL kick_propagator ( 0.5*dt(3), 3 ) ! Kick half-step (outer shell)
! End outer shell 3
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r, v ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
DO k = 1, k_max
CALL force ( box, r_cut, lambda, k, total(k) )
IF ( total(k)%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in final configuration'
STOP 'Error in md_lj_mts'
END IF
END DO
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r, v ) ! Write out final configuration
CALL deallocate_arrays
CALL conclusion
CONTAINS
SUBROUTINE kick_propagator ( t, k )
IMPLICIT NONE
REAL, INTENT(in) :: t ! Timestep (typically half the current timestep)
INTEGER, INTENT(in) :: k ! Force array shell number
v(:,:) = v(:,:) + t * f(:,:,k)
END SUBROUTINE kick_propagator
SUBROUTINE drift_propagator ( t )
IMPLICIT NONE
REAL, INTENT(in) :: t ! Timestep (typically dt)
r(:,:) = r(:,:) + t * v(:,:)
END SUBROUTINE drift_propagator
FUNCTION calc_variables ( ) RESULT ( variables )
USE lrc_module, ONLY : potential_lrc, pressure_lrc
USE md_module, ONLY : hessian
USE averages_module, ONLY : variable_type, msd, cke
IMPLICIT NONE
TYPE(variable_type), DIMENSION(8) :: variables ! The 8 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
TYPE(variable_type) :: e_s, p_s, e_f, p_f, t_k, t_c, c_s, conserved_msd
REAL :: kin, vol, rho, tmp, pot, cut, eng, vir, lap, fsq, hes
! Preliminary calculations
kin = 0.5*SUM(v**2) ! Total kinetic energy
tmp = 2.0 * kin / REAL ( 3*n - 3 ) ! Three degrees of freedom for conserved momentum
vol = box**3 ! Volume
rho = REAL ( n ) / box**3 ! Density
pot = SUM ( total(:)%pot ) ! Sum cut-and-shifted potential over shells
cut = SUM ( total(:)%cut ) ! Sum cut (but not shifted) potential over shells
vir = SUM ( total(:)%vir ) ! Sum virial over shells
lap = SUM ( total(:)%lap ) ! Sum Laplacian over shells
fsq = SUM ( SUM(f(:,:,:),dim=3)**2 ) ! Sum forces over shells before squaring
hes = hessian ( box, r_cut(k_max) ) ! Hessian (not resolved into shells)
eng = kin + pot ! Total energy (should be conserved)
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Kinetic temperature
t_k = variable_type ( nam = 'T kinetic', val = tmp )
! Internal energy (cut-and-shifted) per atom
! Total KE plus cut-and-shifted PE divided by N
e_s = variable_type ( nam = 'E/N cut&shifted', val = eng/REAL(n) )
! Internal energy (full, including LRC) per atom
! LRC plus total KE plus total cut (but not shifted) PE divided by N
e_f = variable_type ( nam = 'E/N full', val = potential_lrc(rho,r_cut(k_max)) + (kin+cut)/REAL(n) )
! Pressure (cut-and-shifted)
! Ideal gas contribution plus total virial divided by V
p_s = variable_type ( nam = 'P cut&shifted', val = rho*tmp + vir/vol )
! Pressure (full, including LRC)
! LRC plus ideal gas contribution plus total virial divided by V
p_f = variable_type ( nam = 'P full', val = pressure_lrc(rho,r_cut(k_max)) + rho*tmp + vir/vol )
! Configurational temperature
! Total squared force divided by Laplacian with small Hessian correction
t_c = variable_type ( nam = 'T config', val = fsq/(lap-2.0*(hes/fsq)) )
! MSD of kinetic energy, intensive
! Use special method to convert to Cv/N
c_s = variable_type ( nam = 'Cv/N cut&shifted', val = kin/SQRT(REAL(n)), method = cke, instant = .FALSE. )
! Mean-squared deviation of conserved energy
conserved_msd = variable_type ( nam = 'Conserved MSD', val = eng/REAL(n), &
& method = msd, e_format = .TRUE., instant = .FALSE. )
! Collect together for averaging
variables = [ e_s, p_s, e_f, p_f, t_k, t_c, c_s, conserved_msd ]
END FUNCTION calc_variables
END PROGRAM md_lj_mts