-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmc_gibbs_lj.f90
477 lines (365 loc) · 23.1 KB
/
mc_gibbs_lj.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
! mc_gibbs_lj.f90
! Monte Carlo, Gibbs ensemble
PROGRAM mc_gibbs_lj
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a pair of configurations of atoms (positions)
! Cubic periodic boundary conditions
! Conducts Gibbs ensemble Monte Carlo at the given temperature, total volume and total N
! To avoid some inconvenient tests, we disallow configurations in which either box is empty
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are divided by box length after reading in
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! For example, for Lennard-Jones, sigma = 1, epsilon = 1
! Note that long-range corrections are not included in the acceptance/rejection
! of creation and destruction moves
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model is defined in mc_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : metropolis, random_integer, random_translate_vector
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& potential_1, potential, move, swap, n, r, potential_type
IMPLICIT NONE
! Most important variables
REAL, DIMENSION(2) :: box ! Box lengths
REAL :: dr_max ! Maximum MC displacement
REAL :: dv_max ! Maximum MC volume change
REAL :: temperature ! Specified temperature
REAL :: r_cut ! Potential cutoff distance
! Composite interaction = pot & vir & ovr variables
TYPE(potential_type), DIMENSION(2) :: total, total_new
TYPE(potential_type) :: partial_old, partial_new
! Histograms of density, energy, and pressure
INTEGER, PARAMETER :: nh = 300
REAL, PARAMETER :: rho_min = 0.0, rho_max = 0.9
REAL, PARAMETER :: rho_del = ( rho_max - rho_min ) / REAL(nh)
REAL, PARAMETER :: eng_min = -3.3, eng_max = 1.2
REAL, PARAMETER :: eng_del = ( eng_max - eng_min ) / REAL(nh)
REAL, DIMENSION(nh) :: rho_hist, eng_hist
INTEGER :: blk, stp, i, nstep, nblock, nswap
INTEGER :: iswap, m_acc, x12_try, x12_acc, x21_try, x21_acc, ioerr
REAL :: delta, dv, zeta, m1_ratio, m2_ratio, x12_ratio, x21_ratio, v_ratio
REAL, DIMENSION(3) :: ri
REAL, DIMENSION(2) :: box_new, vol_new, vol_old
CHARACTER(len=5), DIMENSION(2), PARAMETER :: cnf_prefix = ['cnf1.','cnf2.']
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
NAMELIST /nml/ nblock, nstep, nswap, temperature, r_cut, dr_max, dv_max
WRITE ( unit=output_unit, fmt='(a)' ) 'mc_gibbs_lj'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Monte Carlo, Gibbs ensemble'
CALL introduction
CALL RANDOM_INIT ( .FALSE., .TRUE. ) ! Initialize random number generator
! Set sensible default run parameters for testing
nblock = 10
nstep = 10000
nswap = 20
temperature = 1.0
r_cut = 2.5
dr_max = 0.15
dv_max = 10.0
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in mc_gibbs_lj'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Swap attempts per step', nswap
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature', temperature
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Potential cutoff distance', r_cut
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum displacement', dr_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum volume change', dv_max
! Read in initial configurations and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix(1)//inp_tag, n(1), box(1) ) ! First call is just to get n and box
CALL read_cnf_atoms ( cnf_prefix(2)//inp_tag, n(2), box(2) ) ! First call is just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,2i15)' ) 'Number of particles', n(:)
WRITE ( unit=output_unit, fmt='(a,t40,2f15.6)' ) 'Simulation box length', box(:)
WRITE ( unit=output_unit, fmt='(a,t40,2f15.6)' ) 'Density', REAL(n(:)) / box(:)**3
CALL allocate_arrays ( box(:), r_cut ) ! Allocate r
CALL read_cnf_atoms ( cnf_prefix(1)//inp_tag, n(1), box(1), r(:,1:n(1)) ) ! Second call is to get r
CALL read_cnf_atoms ( cnf_prefix(2)//inp_tag, n(2), box(2), r(:,n(1)+1:n(1)+n(2)) ) ! Second call is to get r
r(:,1:n(1)) = r(:,1:n(1)) / box(1) ! Convert positions to box units
r(:,n(1)+1:n(1)+n(2)) = r(:,n(1)+1:n(1)+n(2)) / box(2) ! Convert positions to box units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
! Initial energy and overlap check
total(1) = potential ( 1, n(1), box(1), r_cut )
total(2) = potential ( n(1)+1, n(1)+n(2), box(2), r_cut )
IF ( total(1)%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration 1'
STOP 'Error in mc_gibbs_lj'
END IF
IF ( total(2)%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration 2'
STOP 'Error in mc_gibbs_lj'
END IF
! Initialize arrays for averaging and write column headings
m1_ratio = 0.0
m2_ratio = 0.0
x12_ratio = 0.0
x21_ratio = 0.0
v_ratio = 0.0
CALL run_begin ( calc_variables() )
! Zero histograms
rho_hist(:) = 0.0
eng_hist(:) = 0.0
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
m_acc = 0
DO i = 1, n(1) ! Loop over atoms in system 1
partial_old = potential_1 ( 1, n(1), r(:,i), i, box(1), r_cut ) ! Old atom potential, virial etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_gibbs_lj'
END IF
ri(:) = random_translate_vector ( dr_max/box(1), r(:,i) ) ! Trial move to new position (in box=1 units)
ri(:) = ri(:) - ANINT ( ri(:) ) ! Periodic boundary correction
partial_new = potential_1 ( 1, n(1), ri, i, box(1), r_cut ) ! New atom potential, virial etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = partial_new%pot - partial_old%pot ! Use cut (but not shifted) potential
delta = delta / temperature ! Divide by temperature
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
CALL move ( i, ri ) ! Update position
total(1) = total(1) + partial_new - partial_old ! Update total values
m_acc = m_acc + 1 ! Increment move counter
END IF ! End accept Metropolis test
END IF ! End test for overlapping configuration
END DO ! End loop over atoms in system 1
m1_ratio = REAL(m_acc) / REAL(n(1))
m_acc = 0
DO i = n(1)+1, n(1)+n(2) ! Loop over atoms in system 2
partial_old = potential_1 ( n(1)+1, n(1)+n(2), r(:,i), i, box(2), r_cut ) ! Old atom potential, virial etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_gibbs_lj'
END IF
ri(:) = random_translate_vector ( dr_max/box(2), r(:,i) ) ! Trial move to new position (in box=1 units)
ri(:) = ri(:) - ANINT ( ri(:) ) ! Periodic boundary correction
partial_new = potential_1 ( n(1)+1, n(1)+n(2), ri, i, box(2), r_cut ) ! New atom potential, virial etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = partial_new%pot - partial_old%pot ! Use cut (but not shifted) potential
delta = delta / temperature ! Divide by temperature
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
CALL move ( i, ri ) ! Update position
total(2) = total(2) + partial_new - partial_old ! Update total values
m_acc = m_acc + 1 ! Increment move counter
END IF ! End accept Metropolis test
END IF ! End test for overlapping configuration
END DO ! End loop over atoms in system 2
m2_ratio = REAL(m_acc) / REAL(n(2))
x12_try = 0
x12_acc = 0
x21_try = 0
x21_acc = 0
DO iswap = 1, nswap ! Loop over swap attempts
CALL RANDOM_NUMBER ( ri ) ! Three uniform random numbers in range (0,1)
ri = ri - 0.5 ! Now in range (-0.5,+0.5) for box=1 units
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number on (0,1)
IF ( zeta > 0.5 ) THEN ! Try swapping 1->2
x12_try = x12_try + 1
IF ( n(1) > 1 ) THEN ! Disallow n(1)->0
i = random_integer ( 1, n(1) ) ! Choose atom at random in system 1
partial_old = potential_1 ( 1, n(1), r(:,i), i, box(1), r_cut ) ! Old atom potential, virial, etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_gibbs_lj'
END IF
partial_new = potential_1 ( n(1)+1, n(1)+n(2), ri, 0, box(2), r_cut ) ! New atom potential, virial, etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = ( partial_new%pot - partial_old%pot ) / temperature ! Use cut (not shifted) potential
delta = delta - LOG ( box(2)**3 / REAL ( n(2)+1 ) ) ! Creation in 2
delta = delta + LOG ( box(1)**3 / REAL ( n(1) ) ) ! Destruction in 1
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
CALL swap ( i, ri ) ! Carry out swap
total(1) = total(1) - partial_old ! Update total values
total(2) = total(2) + partial_new ! Update total values
x12_acc = x12_acc + 1 ! Increment 1->2 move counter
END IF ! End accept Metropolis test
END IF ! End test for non-overlapping configuration
END IF ! End test to disallow n(1)->0
ELSE ! Try swapping 2->1
x21_try = x21_try + 1
IF ( n(2) > 1 ) THEN ! Disallow n(2)->0
i = random_integer ( n(1)+1, n(1)+n(2) ) ! Choose atom at random in system 2
partial_old = potential_1 ( n(1)+1, n(1)+n(2), r(:,i), i, box(2), r_cut ) ! Old atom potential, virial, etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_gibbs_lj'
END IF
partial_new = potential_1 ( 1, n(1), ri, 0, box(1), r_cut ) ! New atom potential, virial, etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = ( partial_new%pot - partial_old%pot ) / temperature ! Use cut (not shifted) potential
delta = delta - LOG ( box(1)**3 / REAL ( n(1)+1 ) ) ! Creation in 1
delta = delta + LOG ( box(2)**3 / REAL ( n(2) ) ) ! Destruction in 2
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
CALL swap ( i, ri ) ! Carry out swap
total(2) = total(2) - partial_old ! Update total values
total(1) = total(1) + partial_new ! Update total values
x21_acc = x21_acc + 1 ! Increment 2->1 move counter
END IF ! End accept Metropolis test
END IF ! End test for non-overlapping configuration
END IF ! End test to disallow n(2)->0
END IF ! End choice between trying to swap 1->2 and 2->1
END DO ! End loop over swap attempts
x12_ratio = 0.0
IF ( x12_try > 0 ) x12_ratio = REAL(x12_acc) / REAL(x12_try)
x21_ratio = 0.0
IF ( x21_try > 0 ) x21_ratio = REAL(x21_acc) / REAL(x21_try)
! Volume move
v_ratio = 0.0
CALL RANDOM_NUMBER ( zeta ) ! Uniform on (0,1)
dv = dv_max * ( 2.0*zeta - 1.0 ) ! Uniform on (-dv_max,+dv_max)
vol_old(:) = box(:)**3 ! Old volumes
vol_new(:) = vol_old(:) + [-dv,dv] ! New volumes
box_new(:) = vol_new(:)**(1.0/3.0) ! New box lengths
IF ( MINVAL(box_new) < 2.0*r_cut ) THEN
WRITE ( unit=error_unit, fmt='(a,2f15.6)') 'Box length too small', box_new
STOP 'Error in mc_gibbs_lj'
END IF
total_new(1) = potential ( 1, n(1), box_new(1), r_cut )
total_new(2) = potential ( n(1)+1, n(1)+n(2), box_new(2), r_cut )
IF ( .NOT. ANY ( total_new%ovr ) ) THEN ! Test for non-overlapping configurations
delta = SUM ( total_new%pot - total%pot ) ! Use cut (but not shifted) potential
delta = delta / temperature ! Divide by temperature
delta = delta - REAL(n(1))*LOG(vol_new(1)/vol_old(1)) ! Volume scaling in system 1
delta = delta - REAL(n(2))*LOG(vol_new(2)/vol_old(2)) ! Volume scaling in system 2
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
total(:) = total_new(:) ! Update total values
box(:) = box_new(:) ! Update box lengths
v_ratio = 1.0 ! Set move counter
END IF ! Reject Metropolis test
END IF ! End test for non-overlapping configurations
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
CALL add_hist
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix(1)//sav_tag, n(1), box(1), box(1)*r(:,1:n(1)) ) ! Save configuration
CALL write_cnf_atoms ( cnf_prefix(2)//sav_tag, n(2), box(2), box(2)*r(:,n(1)+1:n(1)+n(2)) ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
CALL write_cnf_atoms ( cnf_prefix(1)//out_tag, n(1), box(1), box(1)*r(:,1:n(1)) ) ! Write out final configuration
CALL write_cnf_atoms ( cnf_prefix(2)//out_tag, n(2), box(2), box(2)*r(:,n(1)+1:n(1)+n(2)) ) ! Write out final configuration
CALL write_hist
CALL deallocate_arrays
CALL conclusion
CONTAINS
FUNCTION calc_variables () RESULT ( variables )
USE lrc_module, ONLY : potential_lrc, pressure_lrc, pressure_delta
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(13) :: variables ! The 13 variables listed below
! This function returns all variables of interest in an array, for use in the main program
! In this example we simulate using the cut (but not shifted) potential
! The values of < p_c >, < e_c > and < density > should be consistent (for this potential)
! For simplicity, long-range corrections are not applied here to give estimates of
! < e_f > and < p_f > for the full (uncut) potential, but this is straightforward to do.
! The value of the cut-and-shifted potential is not used, in this example
TYPE(variable_type) :: m1_r, m2_r, x12_r, x21_r, v_r
TYPE(variable_type) :: n_1, n_2, density_1, density_2, e1_c, e2_c, p1_c, p2_c
REAL, DIMENSION(2) :: vol, rho
! Preliminary calculations (m_ratio, total etc are known already)
vol(:) = box(:)**3
rho(:) = REAL(n(:)) / vol(:)
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Move, swap, volume exchange acceptance ratios
m1_r = variable_type ( nam = 'Move ratio (1)', val = m1_ratio, instant = .FALSE. )
m2_r = variable_type ( nam = 'Move ratio (2)', val = m2_ratio, instant = .FALSE. )
x12_r = variable_type ( nam = 'Swap ratio (1->2)', val = x12_ratio, instant = .FALSE. )
x21_r = variable_type ( nam = 'Swap ratio (2->1)', val = x21_ratio, instant = .FALSE. )
v_r = variable_type ( nam = 'Volume ratio', val = v_ratio, instant = .FALSE. )
! Number of particles
n_1 = variable_type ( nam = 'Number (1)', val = REAL(n(1)) )
n_2 = variable_type ( nam = 'Number (2)', val = REAL(n(2)) )
! Density
density_1 = variable_type ( nam = 'Density (1)', val = rho(1) )
density_2 = variable_type ( nam = 'Density (2)', val = rho(2) )
! Internal energy per atom for simulated, cut, potential
! Ideal gas contribution plus cut (but not shifted) PE divided by N
e1_c = variable_type ( nam = 'E/N cut (1)', val = 1.5*temperature + total(1)%pot/REAL(n(1)) )
e2_c = variable_type ( nam = 'E/N cut (2)', val = 1.5*temperature + total(2)%pot/REAL(n(2)) )
! Pressure for simulated, cut, potential
! delta correction plus ideal gas contribution plus total virial divided by V
p1_c = variable_type ( nam = 'P cut (1)', val = pressure_delta(rho(1),r_cut) + rho(1)*temperature + total(1)%vir/vol(1) )
p2_c = variable_type ( nam = 'P cut (2)', val = pressure_delta(rho(2),r_cut) + rho(2)*temperature + total(2)%vir/vol(2) )
! Collect together for averaging
variables = [ m1_r, m2_r, x12_r, x21_r, v_r, n_1, n_2, density_1, density_2, e1_c, e2_c, p1_c, p2_c ]
END FUNCTION calc_variables
SUBROUTINE add_hist
REAL :: rho, eng
INTEGER :: k
rho = REAL(n(1)) / box(1)**3
k = 1 + FLOOR ( ( rho - rho_min ) / rho_del )
IF ( k >= 1 .AND. k <= nh ) rho_hist(k) = rho_hist(k) + 1.0
rho = REAL(n(2)) / box(2)**3
k = 1 + FLOOR ( ( rho - rho_min ) / rho_del )
IF ( k >= 1 .AND. k <= nh ) rho_hist(k) = rho_hist(k) + 1.0
eng = 1.5*temperature + total(1)%pot/REAL(n(1))
k = 1 + FLOOR ( ( eng - eng_min ) / eng_del )
IF ( k >= 1 .AND. k <= nh ) eng_hist(k) = eng_hist(k) + 1.0
eng = 1.5*temperature + total(2)%pot/REAL(n(2))
k = 1 + FLOOR ( ( eng - eng_min ) / eng_del )
IF ( k >= 1 .AND. k <= nh ) eng_hist(k) = eng_hist(k) + 1.0
END SUBROUTINE add_hist
SUBROUTINE write_hist
INTEGER :: hist_unit, ioerr, k
REAL :: norm, rho, eng
CHARACTER(len=7), PARAMETER :: filename = 'his.out'
! Normalization factor for two data points at each step
norm = REAL(2*nstep*nblock)
rho_hist = rho_hist / ( norm * rho_del )
eng_hist = eng_hist / ( norm * eng_del )
OPEN ( newunit = hist_unit, file = filename, status='replace', iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,a,i15)') 'Error opening ', filename, ioerr
STOP 'Error in write_hist'
END IF
DO k = 1, nh
rho = rho_min + (REAL(k)-0.5) * rho_del
eng = eng_min + (REAL(k)-0.5) * eng_del
WRITE ( unit=hist_unit, fmt='(4f15.6)' ) rho, rho_hist(k), eng, eng_hist(k)
END DO
CLOSE ( unit=hist_unit )
END SUBROUTINE write_hist
END PROGRAM mc_gibbs_lj