-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmaths_module.f90
971 lines (746 loc) · 37.7 KB
/
maths_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
! maths_module.f90
! Routines for maths, random numbers, order parameters
MODULE maths_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : error_unit
IMPLICIT NONE
PRIVATE
! Public random number routines
PUBLIC :: random_integer, random_normal, random_normals, pick
PUBLIC :: random_vector
PUBLIC :: random_vector_1, random_vector_2, random_vector_3
PUBLIC :: random_perpendicular_vector
PUBLIC :: random_rotate_vector, random_translate_vector
PUBLIC :: random_rotate_vector_1, random_rotate_vector_2, random_rotate_vector_3, random_rotate_vector_4
PUBLIC :: random_quaternion, random_rotate_quaternion
PUBLIC :: metropolis
! Public low-level mathematical routines and string operations
PUBLIC :: rotate_vector, rotate_quaternion, cross_product, outer_product, q_to_a
PUBLIC :: lowercase, solve, polyval, expm1, exprel
! Public order parameter calculations
PUBLIC :: orientational_order, translational_order, nematic_order
! Generic interface for the pick functions
INTERFACE pick
MODULE PROCEDURE pick_i ! for integer weights
MODULE PROCEDURE pick_r ! for real weights
END INTERFACE pick
! Generic interface for the outer_product functions
INTERFACE outer_product
MODULE PROCEDURE outer_product_2 ! for 2 vectors giving a rank-2 result
MODULE PROCEDURE outer_product_3 ! for 3 vectors giving a rank-3 result
MODULE PROCEDURE outer_product_4 ! for 4 vectors giving a rank-4 result
MODULE PROCEDURE outer_product_5 ! for 5 vectors giving a rank-5 result
END INTERFACE outer_product
! Generic interface for the random_normals functions
INTERFACE random_normals
MODULE PROCEDURE random_normals_1 ! for rank 1 vector of normals
MODULE PROCEDURE random_normals_2 ! for rank 2 vector of normals
END INTERFACE random_normals
! Interface to select one of the random_vector algorithms
INTERFACE random_vector
MODULE PROCEDURE random_vector_1 ! choose an alternative one instead if you prefer
END INTERFACE random_vector
! Interface to select one of the random_rotate_vector algorithms
INTERFACE random_rotate_vector
MODULE PROCEDURE random_rotate_vector_1 ! choose an alternative one instead if you prefer
END INTERFACE random_rotate_vector
! Private data
REAL, PARAMETER :: pi = 4.0*ATAN(1.0), twopi = 2.0*pi
REAL, PARAMETER :: tol = 1.e-6
CONTAINS
! Routines associated with random number generation
FUNCTION random_integer ( k1, k2 ) RESULT ( k )
IMPLICIT NONE
INTEGER :: k ! Returns a uniformly distributed random integer
INTEGER, INTENT(in) :: k1, k2 ! in range [k1,k2] inclusive
INTEGER :: k_min, k_max
REAL :: zeta
CALL RANDOM_NUMBER ( zeta )
k_min = MIN ( k1, k2 )
k_max = MAX ( k1, k2 )
k = k_min + FLOOR ( (k_max-k_min+1)*zeta )
! Guard against small danger of roundoff
IF ( k < k_min ) k = k_min
IF ( k > k_max ) k = k_max
END FUNCTION random_integer
FUNCTION random_normal ( mean, std ) RESULT ( r )
IMPLICIT NONE
REAL :: r ! Returns a normally-distributed random number with
REAL, INTENT(in) :: mean ! specified mean and
REAL, INTENT(in) :: std ! specified standard deviation
! Box-Muller transform produces numbers in pairs
! We alternate between generating them, saving one for next time,
! and using the saved one from last time
REAL, DIMENSION(2) :: zeta
REAL, SAVE :: s
LOGICAL, SAVE :: saved = .FALSE.
IF ( saved ) THEN ! Saved number is available
r = s ! Normal, with mean=0, std=1
r = mean + std * r ! Normal, with desired mean, std
saved = .FALSE. ! Flag to generate fresh numbers next time
ELSE ! Saved number is not available
CALL RANDOM_NUMBER (zeta) ! Two uniformly distributed random numbers
r = SQRT(-2.0*LOG(zeta(1)))*COS(twopi*zeta(2)) ! Normal, with mean=0, std=1
s = SQRT(-2.0*LOG(zeta(1)))*SIN(twopi*zeta(2)) ! Also normal, with mean=0, std=1
r = mean + std * r ! Normal, with desired mean, std
saved = .TRUE. ! Flag to use saved number next time
END IF
END FUNCTION random_normal
SUBROUTINE random_normals_1 ( mean, std, r ) ! Normal random numbers
IMPLICIT NONE
REAL, INTENT(in) :: mean ! Specified mean and
REAL, INTENT(in) :: std ! specified standard deviation, used to return
REAL, DIMENSION(:), INTENT(out) :: r ! vector of normal random numbers
INTEGER :: i
DO i = 1, SIZE(r)
r(i) = random_normal ( mean, std )
END DO
END SUBROUTINE random_normals_1
SUBROUTINE random_normals_2 ( mean, std, r ) ! Normal random numbers
IMPLICIT NONE
REAL, INTENT(in) :: mean ! Specified mean and
REAL, INTENT(in) :: std ! specified standard deviation, used to return
REAL, DIMENSION(:,:), INTENT(out) :: r ! array of normal random numbers
INTEGER :: i, j
DO j = 1, SIZE(r,dim=2)
DO i = 1, SIZE(r,dim=1)
r(i,j) = random_normal ( mean, std )
END DO
END DO
END SUBROUTINE random_normals_2
FUNCTION pick_r ( w ) RESULT ( k ) ! Pick amongst options with real weights
IMPLICIT NONE
INTEGER :: k ! Returns one of the options with probability proportional to
REAL, DIMENSION(:), INTENT(in) :: w ! the supplied weights
REAL :: cumw, zeta
CALL RANDOM_NUMBER ( zeta ) ! Random number between 0 and 1
zeta = zeta*SUM(w) ! Scale up to total weight
k = 1
cumw = w(1)
DO ! Loop over possible outcomes
IF ( zeta <= cumw ) EXIT ! Random number less than cumulative weight up to k
k = k + 1
IF ( k > SIZE(w) ) THEN ! Should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'k error ', k, SIZE(w)
STOP 'Error in pick_r'
END IF
cumw = cumw+w(k)
END DO ! End loop over possible outcomes
END FUNCTION pick_r
FUNCTION pick_i ( w ) RESULT ( k ) ! Pick amongst options with integer weights
IMPLICIT NONE
INTEGER :: k ! Returns one of the options with probability proportional to
INTEGER, DIMENSION(:), INTENT(in) :: w ! the supplied weights
INTEGER :: cumw
REAL :: zeta
CALL RANDOM_NUMBER ( zeta ) ! Random number between 0 and 1
zeta = zeta*REAL(SUM(w)) ! Scale up to total weight
k = 1
cumw = w(1)
DO ! Loop over possible outcomes
IF ( zeta <= REAL(cumw) ) EXIT ! Random number less than cumulative weight up to k
k = k + 1
IF ( k > SIZE(w) ) THEN ! Should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'k error ', k, SIZE(w)
STOP 'Error in pick_i'
END IF
cumw = cumw+w(k)
END DO ! End loop over possible outcomes
END FUNCTION pick_i
FUNCTION random_vector_1 () RESULT ( e ) ! 1st alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a uniformly sampled unit vector
! The vector is chosen uniformly within the cube surrounding the unit sphere
! Vectors lying outside the unit sphere are rejected
! Having found a vector within the unit sphere, it is normalized
! Essentially the same routine will work in 2d, or for quaternions in 4d
REAL :: norm
DO ! Loop until within unit sphere
CALL RANDOM_NUMBER ( e ) ! 3 random numbers uniformly sampled in range (0,1)
e = 2.0 * e - 1.0 ! Now in range (-1,+1) i.e. within containing cube
norm = SUM ( e**2 ) ! Square modulus
IF ( norm < 1.0 ) EXIT ! Within unit sphere
END DO ! End loop until within unit sphere
e = e / SQRT ( norm ) ! Normalize
END FUNCTION random_vector_1
FUNCTION random_vector_2 () RESULT ( e ) ! 2nd alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a uniformly sampled unit vector
! The polar angles are chosen from the correct distribution
! sampling phi and cos(theta) uniformly
! Then these are used to compute components of e
REAL :: c, s, phi
REAL, DIMENSION(2) :: zeta
CALL RANDOM_NUMBER ( zeta ) ! Two uniformly sampled random numbers in range (0,1)
c = 2.0 * zeta(1) - 1.0 ! Random cos(theta) uniformly sampled in range (-1,+1)
IF ( c >= 1.0 ) THEN ! Guard against very small chance of roundoff error
s = 0.0 ! Set sin(theta) to zero
ELSE
s = SQRT ( 1.0 - c**2 ) ! Calculate sin(theta) from cos(theta), always positive
END IF
phi = zeta(2) * twopi ! Random angle uniformly sampled in range (0,2*pi)
e = [ s*COS(phi), s*SIN(phi), c ] ! Random unit vector
END FUNCTION random_vector_2
FUNCTION random_vector_3 () RESULT ( e ) ! 3rd alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a uniformly sampled unit vector
REAL, DIMENSION(2) :: zeta
REAL :: norm, f
DO ! Loop until within unit disk
CALL RANDOM_NUMBER ( zeta ) ! Two uniform random numbers between 0 and 1
zeta = 2.0 * zeta - 1.0 ! Now each between -1 and 1
norm = SUM ( zeta**2 ) ! Squared magnitude
IF ( norm < 1.0 ) EXIT ! Test whether inside unit disk
END DO ! End loop until within unit disk
f = 2.0 * SQRT ( 1.0 - norm )
e = [ zeta(1) * f, zeta(2) * f, 1.0 - 2.0 * norm ] ! On surface of unit sphere
END FUNCTION random_vector_3
FUNCTION random_perpendicular_vector ( old ) RESULT ( e )
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a uniformly sampled unit vector perpendicular to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! Note that we do not require the reference vector to be of unit length
! However we do require its length to be greater than a small tolerance!
REAL, DIMENSION(3) :: n
REAL :: proj, norm
norm = SUM ( old**2 ) ! Old squared length
IF ( norm < tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es15.3)' ) 'old normalization error', norm, tol
STOP 'Error in random_perpendicular_vector'
END IF
n = old / SQRT(norm) ! Normalized old vector
DO ! Loop until generated vector is not too small
e = random_vector () ! Randomly oriented unit vector
proj = DOT_PRODUCT ( e, n ) ! Projection along old
e = e - proj * n ! Make e perpendicular to old
norm = SUM ( e**2 ) ! Squared length
IF ( norm > tol ) EXIT ! Accept, unless e is too small (which is unlikely)
END DO ! End loop until generated vector is not too small
e = e / SQRT ( norm ) ! Normalize
END FUNCTION random_perpendicular_vector
FUNCTION random_translate_vector ( dr_max, old ) RESULT ( r )
IMPLICIT NONE
REAL, DIMENSION(3) :: r ! Returns a vector translated by a random amount with
REAL, INTENT(in) :: dr_max ! maximum displacement relative to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! A randomly chosen vector is added to the old one
REAL, DIMENSION(3) :: zeta ! Random numbers
CALL RANDOM_NUMBER ( zeta ) ! Three uniform random numbers in range (0,1)
zeta = 2.0*zeta - 1.0 ! Now in range (-1,+1)
r(:) = old(:) + zeta * dr_max ! Move to new position
END FUNCTION random_translate_vector
FUNCTION random_rotate_vector_1 ( angle_max, old ) RESULT ( e ) ! 1st alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a unit vector rotated by a
REAL, INTENT(in) :: angle_max ! maximum angle (in radians) relative to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! A small randomly chosen vector is added to the old one, and the result renormalized
! Provided angle_max is << 1, it is approximately the maximum rotation angle (in radians)
! The magnitude of the rotation is not uniformly sampled, but this should not matter
! Note that the old vector should be normalized and we test for this
REAL :: norm
norm = SUM ( old**2 ) ! Old squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'old normalization error', norm, tol
STOP 'Error in random_rotate_vector_1'
END IF
! Choose new orientation by adding random small vector
e = old + angle_max * random_vector ()
norm = SUM ( e**2 )
e = e / SQRT(norm) ! Normalize
END FUNCTION random_rotate_vector_1
FUNCTION random_rotate_vector_2 ( angle_max, old ) RESULT ( e ) ! 2nd alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a unit vector rotated by a
REAL, INTENT(in) :: angle_max ! maximum angle (in radians) relative to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! The magnitude of the rotation is uniformly sampled
! The rotation axis is chosen randomly, perpendicular to the old orientation
! Note that the old vector should be normalized and we test for this
REAL, DIMENSION(3) :: perp
REAL :: norm, angle, zeta
norm = SUM ( old**2 ) ! Old squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'old normalization error', norm, tol
STOP 'Error in random_rotate_vector_2'
END IF
perp = random_perpendicular_vector ( old ) ! Choose unit vector perpendicular to old
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number between 0 and 1
angle = ( 2.0 * zeta - 1.0 ) * angle_max ! Uniform random angle in desired range
e = old * COS ( angle ) + perp * SIN ( angle ) ! Rotation in the (old,perp) plane
norm = SUM ( e**2 )
e = e / SQRT(norm) ! Normalize (should be redundant)
END FUNCTION random_rotate_vector_2
FUNCTION random_rotate_vector_3 ( angle_max, old ) RESULT ( e ) ! 3rd alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a unit vector rotated by a
REAL, INTENT(in) :: angle_max ! maximum angle (in radians) relative to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! The magnitude of the rotation is uniformly sampled
! The rotation axis is a Cartesian axis selected at random
! Ref: Barker and Watts, Chem Phys Lett 3, 144 (1969)
! Note that the old vector should be normalized and we test for this
INTEGER :: k
REAL, DIMENSION(3) :: axis
REAL :: angle, norm, zeta
norm = SUM ( old**2 ) ! Old squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'old normalization error', norm, tol
STOP 'Error in random_rotate_vector_3'
END IF
axis = 0.0
k = random_integer (1,3) ! Random axis choice x=1, y=2, z=3
axis(k) = 1.0
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number between 0 and 1
angle = ( 2.0 * zeta - 1.0 ) * angle_max ! Uniform random angle in desired range
e = rotate_vector ( angle, axis, old ) ! General rotation function
END FUNCTION random_rotate_vector_3
FUNCTION random_rotate_vector_4 ( angle_max, old ) RESULT ( e ) ! 4th alternative algorithm
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a unit vector rotated by a
REAL, INTENT(in) :: angle_max ! maximum angle (in radians) relative to
REAL, DIMENSION(3), INTENT(in) :: old ! the old vector
! Ref: Marsaglia, Ann Maths Stat 43, 645 (1972)
! Uses a rejection technique to create a trial orientation
! subject to the constraint that the cosine of the angle
! turned through is greater than cos(angle_max)
! Not very efficient if angle_max is small
! Note that the old vector should be normalized and we test for this
REAL :: cos_min, norm
norm = SUM ( old**2 ) ! Old squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'old normalization error', norm, tol
STOP 'Error in random_rotate_vector_4'
END IF
cos_min = COS ( angle_max )
DO ! Loop until close enough
e = random_vector ( ) ! Choose completely random unit vector
IF ( DOT_PRODUCT ( e, old ) > cos_min ) EXIT ! Close enough
END DO ! End loop until close enough
END FUNCTION random_rotate_vector_4
FUNCTION random_quaternion () RESULT ( e )
IMPLICIT NONE
REAL, DIMENSION(0:3) :: e ! Returns a uniformly sampled unit quaternion
REAL, DIMENSION(2) :: zeta
REAL :: norm1, norm2, f
DO ! Loop until within unit disk
CALL RANDOM_NUMBER ( zeta ) ! Two uniform random numbers between 0 and 1
zeta = 2.0 * zeta - 1.0 ! Now each between -1 and 1
norm1 = SUM ( zeta**2 ) ! Squared magnitude
IF ( norm1 < 1.0 ) EXIT ! Test for within unit disk
END DO ! End loop until within unit disk
e(0) = zeta(1)
e(1) = zeta(2)
DO ! Loop until within unit disk
CALL RANDOM_NUMBER ( zeta ) ! Two uniform random numbers between 0 and 1
zeta = 2.0 * zeta - 1.0 ! Now each between -1 and 1
norm2 = SUM ( zeta**2 ) ! Squared magnitude
IF ( norm2 < 1.0 ) EXIT ! Test for within unit disk
END DO ! End loop until within unit disk
f = SQRT ( ( 1.0 - norm1 ) / norm2 )
e(2) = zeta(1)*f
e(3) = zeta(2)*f
END FUNCTION random_quaternion
FUNCTION random_rotate_quaternion ( angle_max, old ) RESULT ( e )
IMPLICIT NONE
REAL, DIMENSION(0:3) :: e ! Returns a unit quaternion rotated by a
REAL, INTENT(in) :: angle_max ! maximum angle (in radians) relative to
REAL, DIMENSION(0:3), INTENT(in) :: old ! the old quaternion
! Note that the reference quaternion should be normalized and we test for this
REAL, DIMENSION(3) :: axis
REAL :: zeta, angle, norm
norm = SUM ( old**2 ) ! Old squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'old normalization error', norm, tol
STOP 'Error in random_rotate_quaternion'
END IF
axis = random_vector ( ) ! Choose random unit vector
CALL RANDOM_NUMBER ( zeta ) ! Random number between 0 and 1
angle = ( 2.0*zeta - 1.0 ) * angle_max ! Uniform random angle in desired range
e = rotate_quaternion ( angle, axis, old ) ! General rotation function
END FUNCTION random_rotate_quaternion
FUNCTION metropolis ( delta ) RESULT ( accept ) ! Conduct Metropolis test, with safeguards
IMPLICIT NONE
LOGICAL :: accept ! Returns decision
REAL, INTENT(in) :: delta ! Negative of argument of exponential
REAL :: zeta
REAL, PARAMETER :: exponent_guard = 75.0
IF ( delta > exponent_guard ) THEN ! Too high, reject without evaluating
accept = .FALSE.
ELSE IF ( delta < 0.0 ) THEN ! Downhill, accept without evaluating
accept = .TRUE.
ELSE
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number in range (0,1)
accept = EXP(-delta) > zeta ! Metropolis test
END IF
END FUNCTION metropolis
! Low level mathematical operations and string manipulation
FUNCTION rotate_vector ( angle, axis, old ) RESULT ( e )
IMPLICIT NONE
REAL, DIMENSION(3) :: e ! Returns a vector rotated by
REAL, INTENT(in) :: angle ! specified rotation angle (in radians) about
REAL, DIMENSION(3), INTENT(in) :: axis ! specified rotation axis relative to
REAL, DIMENSION(3), INTENT(in) :: old ! old vector
! Note that the axis vector should be normalized and we test for this
! In general, the old vector need not be normalized, and the same goes for the result
! although quite often in our applications they will be
REAL :: proj, c, s, norm
norm = SUM ( axis**2 ) ! Axis squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'axis normalization error', norm, tol
STOP 'Error in rotate_vector'
END IF
c = COS ( angle )
s = SIN ( angle )
proj = DOT_PRODUCT ( axis, old ) ! The two vectors need not be perpendicular
! Standard (Goldstein) rotation formula
e = c * old + ( 1.0 - c ) * proj * axis + s * cross_product ( axis, old )
END FUNCTION rotate_vector
FUNCTION rotate_quaternion ( angle, axis, old ) RESULT ( e )
IMPLICIT NONE
REAL, DIMENSION(0:3) :: e ! Returns a quaternion rotated by
REAL, INTENT(in) :: angle ! specified rotation angle (in radians) about
REAL, DIMENSION(3), INTENT(in) :: axis ! specified rotation axis relative to
REAL, DIMENSION(0:3), INTENT(in) :: old ! old quaternion
! Note that the axis vector should be normalized and we test for this
! In general, the old quaternion need not be normalized, and the same goes for the result
! although in our applications we only ever use unit quaternions (to represent orientations)
REAL :: norm
REAL, DIMENSION(0:3) :: rot
norm = SUM ( axis**2 ) ! Axis squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'axis normalization error', norm, tol
STOP 'Error in rotate_quaternion'
END IF
! Standard formula for rotation quaternion, using half angles
rot(0) = COS(0.5*angle)
rot(1:3) = SIN(0.5*angle)*axis
e = quatmul ( rot, old ) ! Apply rotation to old quaternion
END FUNCTION rotate_quaternion
FUNCTION quatmul ( a, b ) RESULT ( c )
IMPLICIT NONE
REAL, DIMENSION(0:3) :: c ! Returns quaternion product of
REAL, DIMENSION(0:3), INTENT(in) :: a, b ! two supplied quaternions
c(0) = a(0)*b(0) - a(1)*b(1) - a(2)*b(2) - a(3)*b(3)
c(1) = a(1)*b(0) + a(0)*b(1) - a(3)*b(2) + a(2)*b(3)
c(2) = a(2)*b(0) + a(3)*b(1) + a(0)*b(2) - a(1)*b(3)
c(3) = a(3)*b(0) - a(2)*b(1) + a(1)*b(2) + a(0)*b(3)
END FUNCTION quatmul
FUNCTION cross_product ( a, b ) RESULT ( c )
IMPLICIT NONE
REAL, DIMENSION(3) :: c ! Returns vector cross product of
REAL, DIMENSION(3), INTENT(in) :: a, b ! two supplied vectors
c(1) = a(2)*b(3) - a(3)*b(2)
c(2) = a(3)*b(1) - a(1)*b(3)
c(3) = a(1)*b(2) - a(2)*b(1)
END FUNCTION cross_product
FUNCTION outer_product_2 ( a, b ) RESULT ( c )
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: a, b ! Given two supplied vectors,
REAL, DIMENSION(SIZE(a),SIZE(b)) :: c ! returns their rank-2 outer product
INTEGER :: i, j
DO j = 1, SIZE(b)
DO i = 1, SIZE(a)
c(i,j) = a(i) * b(j)
END DO
END DO
! The following one-line statement is equivalent, but the above loops are clearer
! c = SPREAD(a,dim=2,ncopies=SIZE(b)) * SPREAD(b,dim=1,ncopies=SIZE(a))
END FUNCTION outer_product_2
FUNCTION outer_product_3 ( a, b, c ) RESULT (d)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: a, b, c ! Given three supplied vectors,
REAL, DIMENSION(SIZE(a),SIZE(b),SIZE(c)) :: d ! returns their rank-3 outer product
INTEGER :: i, j, k
DO k = 1, SIZE(c)
DO j = 1, SIZE(b)
DO i = 1, SIZE(a)
d(i,j,k) = a(i) * b(j) * c(k)
END DO
END DO
END DO
END FUNCTION outer_product_3
FUNCTION outer_product_4 ( a, b, c, d ) RESULT (e)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: a, b, c, d ! Given four supplied vectors,
REAL, DIMENSION(SIZE(a),SIZE(b),SIZE(c),SIZE(d)) :: e ! returns their rank-4 outer product
INTEGER :: i, j, k, l
DO l = 1, SIZE(d)
DO k = 1, SIZE(c)
DO j = 1, SIZE(b)
DO i = 1, SIZE(a)
e(i,j,k,l) = a(i) * b(j) * c(k) * d(l)
END DO
END DO
END DO
END DO
END FUNCTION outer_product_4
FUNCTION outer_product_5 ( a, b, c, d, e ) RESULT (f)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: a, b, c, d, e ! Given five supplied vectors,
REAL, DIMENSION(SIZE(a),SIZE(b),SIZE(c),SIZE(d),SIZE(e)) :: f ! returns their rank-5 outer product
INTEGER :: i, j, k, l, m
DO m = 1, SIZE(e)
DO l = 1, SIZE(d)
DO k = 1, SIZE(c)
DO j = 1, SIZE(b)
DO i = 1, SIZE(a)
f(i,j,k,l,m) = a(i) * b(j) * c(k) * d(l) * e(m)
END DO
END DO
END DO
END DO
END DO
END FUNCTION outer_product_5
FUNCTION lowercase ( oldstring ) RESULT ( newstring )
IMPLICIT NONE
CHARACTER(len=*), INTENT(in) :: oldstring ! Given a supplied string,
CHARACTER(len=LEN(oldstring)) :: newstring ! returns a copy converted to lowercase
INTEGER :: i, k
! Leaves non-alphabetic characters unchanged
DO i = 1, LEN(oldstring)
k = IACHAR(oldstring(i:i))
IF ( k >= IACHAR('A') .AND. k <= IACHAR('Z') ) THEN
k = k + IACHAR('a') - IACHAR('A')
newstring(i:i) = ACHAR(k)
ELSE
newstring(i:i) = oldstring(i:i)
END IF
END DO
END FUNCTION lowercase
! Order parameter routines
FUNCTION translational_order ( r, k ) RESULT ( order )
IMPLICIT NONE
REAL :: order ! Returns a translational order parameter from
REAL, DIMENSION(:,:), INTENT(in) :: r ! set of molecular position vectors (3,n), and
INTEGER, DIMENSION(3), INTENT(in), OPTIONAL :: k ! lattice reciprocal vector (integer)
! Calculate the "melting factor" for translational order
! based on a single k-vector characterizing the original lattice
! and commensurate with the periodic box
! It is assumed that both r and k are in box=1 units
! k = (l,m,n) where l,m,n are integers, must be multiplied by 2*pi to get real k
! If optional argument k is omitted, we default to a choice
! based on the FCC lattice, if this makes sense based on the number of atoms
! order = 1 when all atoms are on their lattice positions
! order = 1/sqrt(n), approximately, for disordered positions
INTEGER :: i, n, nc
REAL, DIMENSION(3) :: k_real
REAL :: kr
COMPLEX :: rho ! Fourier component of single-particle density
IF ( SIZE(r,dim=1) /= 3 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'Error in r dimension ', SIZE(r,dim=1)
STOP 'Error in translational_order'
END IF
n = SIZE(r,dim=2)
IF ( PRESENT ( k ) ) THEN
k_real = twopi * REAL ( k )
ELSE ! Make arbitrary choice assuming FCC
nc = NINT ( ( REAL(n)/4.0 ) ** (1.0/3.0) ) ! number of FCC unit cells
IF ( 4*nc**3 /= n ) THEN ! Check that n does indeed correspond to FCC lattice
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Error in value of n ', 4*nc**3, n
STOP 'Error in translational_order'
END IF
k_real = twopi * REAL( [-nc,nc,-nc] ) ! arbitrary fcc reciprocal vector
END IF
rho = ( 0.0, 0.0 )
DO i = 1, n
kr = DOT_PRODUCT ( k_real, r(:,i) )
rho = rho + CMPLX ( COS(kr), SIN(kr) )
END DO
rho = rho / REAL(n)
order = REAL ( CONJG(rho)*rho )
END FUNCTION translational_order
FUNCTION orientational_order ( e ) RESULT ( order )
IMPLICIT NONE
REAL :: order ! Returns a crystal orientational order parameter from
REAL, DIMENSION(:,:), INTENT(in) :: e ! a set of molecular orientation vectors (3,n)
! Calculates an orientational order parameter to monitor "melting"
! The parameter depends completely on knowing the orientations of the molecules
! in the original crystal lattice, and here we assume a specific alpha-fcc crystal
! of the same kind as was set up in initialize.f90 and initialize_module.f90
! Four molecules per unit cell, each pointing along a body-diagonal
! Order parameter can be a low-ranking (e.g. 1st or 2nd) Legendre polynomial
! Note that this is not the same as the order parameter characterizing a nematic liquid crystal
INTEGER :: n, nc, i, i0
REAL :: c
REAL, DIMENSION(3,4), PARAMETER :: e0 = RESHAPE ( SQRT(1.0/3.0)*[ &
& 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, &
& -1.0, 1.0, -1.0, -1.0, -1.0, 1.0 ],[3,4] ) ! Orientations in unit cell
IF ( SIZE(e,dim=1) /= 3 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'Error in e dimension ', SIZE(e,dim=1)
STOP 'Error in orientational_order'
END IF
n = SIZE(e,dim=2)
nc = NINT ( ( REAL(n)/4.0 ) ** (1.0/3.0) )
IF ( 4*nc**3 /= n ) THEN
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Error in value of n ', 4*nc**3, n
STOP 'Error in orientational_order'
END IF
order = 0.0
DO i = 1, n
i0 = MODULO ( i, 4 ) + 1 ! Select appropriate original orientation
c = DOT_PRODUCT ( e(:,i), e0(:,i0) ) ! Cosine of angle
order = order + 1.5*c**2 - 0.5 ! Second Legendre polynomial
END DO
order = order / REAL ( n )
END FUNCTION orientational_order
FUNCTION nematic_order ( e ) RESULT ( order )
IMPLICIT NONE
REAL :: order ! Returns a nematic orientational order parameter from
REAL, DIMENSION(:,:), INTENT(in) :: e ! a set of molecular orientation vectors (3,n)
! Calculate the nematic order parameter <P2(cos(theta))>
! where theta is the angle between a molecular axis and the director
! which is the direction that maximises the order parameter
! This is obtained by finding the largest eigenvalue of
! the 3x3 second-rank traceless order tensor
! Note that this is not the same as the order parameter characterizing a crystal
INTEGER :: n
REAL, DIMENSION(3,3) :: q ! order tensor
REAL :: h, g, psi ! used in eigenvalue calculation
IF ( SIZE(e,dim=1) /= 3 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'Error in e dimension ', SIZE(e,dim=1)
STOP 'Error in nematic_order'
END IF
n = SIZE(e,dim=2)
! Order tensor: outer product of each orientation vector, summed over n molecules
! Then normalized and made traceless
q = SUM ( SPREAD ( e, dim=2, ncopies=3) * SPREAD ( e, dim=1, ncopies=3 ), dim = 3 )
q = 1.5 * q / REAL(n)
q(1,1) = q(1,1) - 0.5
q(2,2) = q(2,2) - 0.5
q(3,3) = q(3,3) - 0.5
! Trigonometric solution of characteristic cubic equation, assuming real roots
h = q(1,1) * q(2,2) - q(1,2) * q(2,1) &
& + q(2,2) * q(3,3) - q(2,3) * q(3,2) &
& + q(3,3) * q(1,1) - q(3,1) * q(1,3)
h = h / 3.0
g = q(1,1) * q(2,2) * q(3,3) - q(1,1) * q(2,3) * q(3,2) &
& + q(1,2) * q(2,3) * q(3,1) - q(2,2) * q(3,1) * q(1,3) &
& + q(2,1) * q(3,2) * q(1,3) - q(3,3) * q(1,2) * q(2,1)
h = SQRT(-h)
psi = -0.5 * g / h**3
IF ( psi < -1.0 ) psi = -1.0
IF ( psi > 1.0 ) psi = 1.0
psi = ACOS(psi)
h = -2.0*h
! Select largest root
order = MAXVAL ( [ h*COS(psi/3.0), h*COS((psi+2.0*pi)/3.0), h*COS((psi+4.0*pi)/3.0) ] )
END FUNCTION nematic_order
FUNCTION solve ( a, b ) RESULT ( x )
IMPLICIT NONE
REAL, DIMENSION(3) :: x ! Returns a vector x, the solution of ax=b, for
REAL, DIMENSION(3,3), INTENT(in) :: a ! supplied 3x3 matrix, and
REAL, DIMENSION(3), INTENT(in) :: b ! supplied constant vector
! Use Cramer's rule to solve 3x3 linear system
REAL :: d
REAL, DIMENSION(3,3) :: ai
INTEGER :: i
d = determinant ( a )
IF ( ABS(d) < tol ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'Error, determinant zero ', d
STOP 'Error in solve'
END IF
DO i = 1, 3
ai = a
ai(:,i) = b ! Replace i-th column of a
x(i) = determinant ( ai ) / d
END DO
END FUNCTION solve
FUNCTION determinant ( a ) RESULT ( d )
IMPLICIT NONE
REAL :: d ! Returns determinant of
REAL, DIMENSION(3,3) :: a ! supplied 3x3 matrix
d = a(1,1) * a(2,2) * a(3,3) - a(1,1) * a(2,3) * a(3,2) &
& + a(1,2) * a(2,3) * a(3,1) - a(2,2) * a(3,1) * a(1,3) &
& + a(2,1) * a(3,2) * a(1,3) - a(3,3) * a(1,2) * a(2,1)
END FUNCTION determinant
FUNCTION q_to_a ( q ) RESULT ( a )
IMPLICIT NONE
REAL, DIMENSION(3,3) :: a ! Returns a 3x3 rotation matrix calculated from
REAL, DIMENSION(0:3), INTENT(in) :: q ! supplied quaternion
! The rows of the rotation matrix correspond to unit vectors of the molecule in the space-fixed frame
! The third row a(3,:) is "the" axis of the molecule, for uniaxial molecules
! Use a to convert space-fixed to body-fixed axes thus: db = matmul(a,ds)
! Use transpose of a to convert body-fixed to space-fixed axes thus: ds = matmul(db,a)
! The supplied quaternion should be normalized and we check for this
REAL :: norm
norm = SUM ( q**2 ) ! Quaternion squared length
IF ( ABS ( norm - 1.0 ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,2es20.8)' ) 'quaternion normalization error', norm, tol
STOP 'Error in q_to_a'
END IF
! Write out row by row, for clarity
a(1,:) = [ q(0)**2+q(1)**2-q(2)**2-q(3)**2, 2*(q(1)*q(2)+q(0)*q(3)), 2*(q(1)*q(3)-q(0)*q(2)) ] ! 1st row
a(2,:) = [ 2*(q(1)*q(2)-q(0)*q(3)), q(0)**2-q(1)**2+q(2)**2-q(3)**2, 2*(q(2)*q(3)+q(0)*q(1)) ] ! 2nd row
a(3,:) = [ 2*(q(1)*q(3)+q(0)*q(2)), 2*(q(2)*q(3)-q(0)*q(1)), q(0)**2-q(1)**2-q(2)**2+q(3)**2 ] ! 3rd row
END FUNCTION q_to_a
FUNCTION polyval ( x, c ) RESULT ( f )
IMPLICIT NONE
REAL :: f ! Returns polynomial in ...
REAL, INTENT(in) :: x ! argument
REAL, DIMENSION(0:), INTENT(in) :: c ! given coefficients (ascending powers of x)
! Uses Horner's rule
INTEGER :: i
f = c(UBOUND(c,1))
DO i = UBOUND(c,1)-1, 0, -1
f = f * x + c(i)
END DO
END FUNCTION polyval
FUNCTION expm1 ( x ) RESULT ( f )
IMPLICIT NONE
REAL, INTENT(in) :: x ! Argument
REAL :: f ! Returns value of exp(x)-1
! At small x, imprecision may arise through subtraction of two values O(1).
! There are various ways of doing this.
! We follow some others and use the identity: exp(x)-1 = x*exp(x/2)*[sinh(x/2)/(x/2)].
! For small x, sinh(x)/x = g0 + g1*x**2 + g2*x**4 + ...
! where the coefficient of x**(2n) is gn = 1/(2*n+1)!
! Alternatively, the expm1 function is available in some math and scientific libraries.
REAL, DIMENSION(0:4), PARAMETER :: g = 1.0 / [1,6,120,5040,362880]
REAL, PARAMETER :: tol = 0.01
IF ( ABS(x) > tol ) THEN
f = EXP(x) - 1.0
ELSE
f = x * EXP(x/2) * polyval ( (x/2)**2, g )
END IF
END FUNCTION expm1
FUNCTION exprel ( x ) RESULT ( f )
IMPLICIT NONE
REAL, INTENT(in) :: x ! Argument
REAL :: f ! Returns value of (exp(x)-1)/x
! At small x, we must guard against the ratio of imprecise small values.
! There are various ways of doing this.
! We follow some others and use the identity: (exp(x)-1)/x = exp(x/2)*[sinh(x/2)/(x/2)].
! For small x, sinh(x)/x = g0 + g1*x**2 + g2*x**4 + ...
! where the coefficient of x**(2n) is gn = 1/(2*n+1)!
! Alternatively, the exprel function is available in some math and scientific libraries.
REAL, DIMENSION(0:4), PARAMETER :: g = 1.0 / [1,6,120,5040,362880]
REAL, PARAMETER :: tol = 0.01
IF ( ABS(x) > tol ) THEN
f = ( EXP(x) - 1.0 ) / x
ELSE
f = EXP(x/2) * polyval ( (x/2)**2, g )
END IF
END FUNCTION exprel
END MODULE maths_module