-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathfft3dwrap.f90
211 lines (166 loc) · 9.74 KB
/
fft3dwrap.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
! fft3dwrap.f90
! 3D fast Fourier transform applied to a Gaussian function
PROGRAM fft3dwrap
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! The program calls use the C subroutine library FFTW to perform the finite Fourier transforms
! The details of this library are available at http://www.fftw.org/
! We assume that compiler flags are set such that real and integer Fortran variables
! have the appropriate precision to match their C counterparts
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE, INTRINSIC :: iso_c_binding
IMPLICIT NONE
INCLUDE 'fftw3.f03'
! In this example the box lengths and numbers of grid points are the same in each dimension
INTEGER :: sc2 ! half the number of grid points
REAL :: box ! periodic repeat distance
REAL :: dr ! grid spacing in real space
REAL :: dk ! grid spacing in reciprocal space
INTEGER :: ix, iy, iz, ioerr
REAL, DIMENSION(3) :: r, k
REAL :: r_sq, k_sq, g
INTEGER(C_INT) :: sc ! number of points for FFT
COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(:,:,:), ALLOCATABLE :: fft_inp ! Data to be transformed (0:sc-1,0:sc-1,0:sc-1)
COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(:,:,:), ALLOCATABLE :: fft_out ! Output data (0:sc-1,0:sc-1,0:sc-1)
TYPE(C_PTR) :: fft_plan! Plan needed for FFTW
REAL, PARAMETER :: pi = 4.0 * ATAN( 1.0 )
INTEGER, PARAMETER :: out_max = 15
NAMELIST /nml/ sc2, box
WRITE ( unit=output_unit, fmt='(a)' ) 'fft3dwrap'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Illustrates calling of functions from FFTW library'
! Set sensible default values for testing
sc2 = 2**6 ! Not essential to be a power of 2, but usually more efficient
box = 6.0 ! Large enough to accommodate the chosen 3D Gaussian, for good comparison with analytical result
! Read parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in fft3dwrap'
END IF
! Write out parameters
sc = sc2 * 2
dr = box / REAL (sc)
dk = (2.0 * pi) / dr / REAL(sc) ! interval in reciprocal space
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of grid points in each dimension, sc = ', sc
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Periodic repeat length (box) = ', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Grid spacing in real space (dr) = ', dr
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Grid spacing in reciprocal space (dk) = ', dk
! Allocate necessary arrays
ALLOCATE ( fft_inp(0:sc-1,0:sc-1,0:sc-1), fft_out(0:sc-1,0:sc-1,0:sc-1) )
! Write titles
WRITE ( unit=output_unit, fmt='(a)' ) 'Initial real-space Gaussian'
WRITE ( unit=output_unit, fmt='(5a15)' ) ' ix iy iz', '|r|', 'Gaussian(r)', 'FFT (real)', 'FFT (imag)'
! Triple loop over xyz grid points (uses wraparound indexing)
DO ix = 0, sc-1
r(1) = REAL ( wraparound ( ix ) ) * dr
DO iy = 0, sc-1
r(2) = REAL ( wraparound ( iy ) ) * dr
DO iz = 0, sc-1
r(3) = REAL ( wraparound ( iz ) ) * dr
r_sq = SUM ( r**2 ) ! Squared distance from origin
g = EXP ( - pi * r_sq ) ! Setup 3D Gaussian (decay parameter chosen to be pi)
fft_inp(ix,iy,iz) = CMPLX ( g, 0.0 ) ! Feed into complex array for FFT
! Write some elements of data in same form as later output
IF ( ix**2 + iy**2 + iz**2 <= out_max ) THEN
WRITE ( unit=output_unit, fmt='(3i5,4f15.6)' ) ix, iy, iz, SQRT(r_sq), g, fft_inp(ix,iy,iz)
END IF
END DO
END DO
END DO
! End triple loop over xyz grid points
WRITE(*,'(/)')
! Forward FFT
fft_plan = fftw_plan_dft_3d ( sc, sc, sc, fft_inp, fft_out, FFTW_FORWARD, FFTW_ESTIMATE) ! Set up plan for the FFT
CALL fftw_execute_dft ( fft_plan, fft_inp, fft_out ) ! Execute FFT
CALL fftw_destroy_plan ( fft_plan ) ! Release plan
! Write titles
WRITE ( unit=output_unit, fmt='(a)' ) 'Reciprocal-space transform'
WRITE ( unit=output_unit, fmt='(5a15)' ) ' ix iy iz', '|k|', 'Gaussian(k)', 'FFT (real)', 'FFT (imag)'
! Triple loop over xyz grid points (uses wraparound indexing)
DO ix = 0, sc-1
k(1) = REAL ( wraparound ( ix ) ) * dk
DO iy = 0, sc-1
k(2) = REAL ( wraparound ( iy ) ) * dk
DO iz = 0, sc-1
k(3) = REAL ( wraparound ( iz ) ) * dk
! Write some elements of data in reciprocal space including factor of dr**3
! Compare with the (real) analytical expression for the transform of the Gaussian test function
IF ( ix**2 + iy**2 + iz**2 <= out_max ) THEN
k_sq = SUM ( k**2 ) ! Squared magnitude of wave vector
g = EXP ( -k_sq / 4.0 / pi ) ! Analytical transform of the Gaussian
WRITE ( unit=output_unit, fmt='(3i5,4f15.6)') ix, iy, iz, SQRT(k_sq), g, fft_out(ix,iy,iz)*dr**3
END IF
END DO
END DO
END DO
! End triple loop over xyz grid points
WRITE ( unit=output_unit, fmt='(/)')
! Backward Fourier transform
fft_plan = fftw_plan_dft_3d ( sc, sc, sc, fft_out, fft_inp, FFTW_BACKWARD, FFTW_ESTIMATE) ! Set up plan for the FFT
CALL fftw_execute_dft ( fft_plan, fft_out, fft_inp ) ! Execute FFT
CALL fftw_destroy_plan ( fft_plan ) ! Release plan
! Write some elements of data in real space after the back transform including the normalising factor 1/sc**3
! Compare with the (real) input data
! Write titles
WRITE ( unit=output_unit, fmt='(a)' ) 'Back Transform to real space'
WRITE ( unit=output_unit, fmt='(5a15)' ) ' ix iy iz', '|r|', 'Gaussian(r)', 'FFT (real)', 'FFT (imag)'
! Triple loop over xyz grid points (uses wraparound indexing)
DO ix = 0, sc-1
r(1) = REAL ( wraparound ( ix ) ) * dr
DO iy = 0, sc-1
r(2) = REAL ( wraparound ( iy ) ) * dr
DO iz = 0, sc-1
r(3) = REAL ( wraparound ( iz ) ) * dr
IF ( ix**2 + iy**2 + iz**2 <= out_max ) THEN
r_sq = SUM ( r**2 ) ! Squared distance from origin
g = EXP ( - pi * r_sq ) ! Original 3d Gaussian
WRITE ( unit=output_unit, fmt='(3i5,4f15.6)' ) ix, iy, iz, SQRT(r_sq), g, fft_inp(ix,iy,iz)/REAL(sc**3)
END IF
END DO
END DO
END DO
! End triple loop over xyz grid points
! All done, deallocate arrays
DEALLOCATE ( fft_inp, fft_out )
CONTAINS
FUNCTION wraparound ( i ) RESULT ( w )
IMPLICIT NONE
INTEGER :: w ! Returns wrapped index
INTEGER, INTENT(in) :: i ! Index to be wrapped
IF ( i < 0 .OR. i >= sc ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,i15)') 'Indexing error', i
STOP 'Error in fft3dwrap/wraparound'
END IF
IF ( i < sc2 ) THEN
w = i
ELSE
w = i - sc
END IF
END FUNCTION wraparound
END PROGRAM fft3dwrap