-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy patheos_lj_module.f90
256 lines (203 loc) · 12 KB
/
eos_lj_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
! eos_lj_module.f90
! Routines for Lennard-Jones fitted equations of state
MODULE eos_lj_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! The routines in this module use the fitting function described and parametrized in
! M Thol, G Rutkai, R Span, J Vrabec, R Lustig, Int J Thermophys 36, 25 (2015)
! M Thol, G Rutkai, A Koester, R Lustig, R Span, J Vrabec, J Phys Chem Ref Data 45, 023101 (2016)
! Those authors also supply C++ codes (in the supplementary information of those papers)
! They are NOT responsible for this Fortran code, which was written independently by Michael P Allen
! A similar notation, consistent with the papers, is retained for clarity.
IMPLICIT NONE
PRIVATE
! Public routines
PUBLIC :: a_res_full, a_res_cutshift
! Private derived types for sets of coefficients
TYPE :: power_type ! Coefficients for power function
REAL :: n ! Amplitude
REAL :: t ! Power of tau
REAL :: d ! Power of delta
END TYPE power_type
TYPE :: expon_type ! Coefficients for exponential function
REAL :: n ! Amplitude
REAL :: t ! Power of tau
REAL :: d ! Power of delta
REAL :: l ! Power of delta in exponent
END TYPE expon_type
TYPE :: gauss_type ! Coefficients for Gaussian function
REAL :: n ! Amplitude
REAL :: t ! Power of tau
REAL :: d ! Power of delta
REAL :: beta ! Width factor for tau
REAL :: gamma ! Shift factor for tau
REAL :: eta ! Width factor for delta
REAL :: epsilon ! Shift factor for delta
END TYPE gauss_type
! Private arrays of coefficients for each function
TYPE(power_type), DIMENSION(:), ALLOCATABLE :: cp ! Coefficients for powers
TYPE(expon_type), DIMENSION(:), ALLOCATABLE :: ce ! Coefficients for exponentials
TYPE(gauss_type), DIMENSION(:), ALLOCATABLE :: cg ! Coefficients for Gaussians
CONTAINS
FUNCTION power ( tau, delta, c ) RESULT ( f )
IMPLICIT NONE
REAL, DIMENSION(0:2,0:2) :: f ! Returns power function and scaled derivatives
REAL, INTENT(in) :: tau ! Reduced inverse temperature
REAL, INTENT(in) :: delta ! Reduced density
TYPE(power_type), INTENT(in) :: c ! Coefficients
! f(0,0) is n*(tau**t)*(delta**d)
! f(i,:) is differentiated i times with respect to tau, and then multiplied by tau**i
! f(:,j) is differentiated j times with respect to delta, and then multiplied by delta**j
f(:,:) = c%n * (tau**c%t) * (delta**c%d)
f(1,:) = f(1,:) * c%t
f(2,:) = f(2,:) * c%t * ( c%t - 1.0 )
f(:,1) = f(:,1) * c%d
f(:,2) = f(:,2) * c%d * ( c%d - 1.0 )
END FUNCTION power
FUNCTION expon ( tau, delta, c ) RESULT ( f )
IMPLICIT NONE
REAL, DIMENSION(0:2,0:2) :: f ! Returns exponential function and scaled derivatives
REAL, INTENT(in) :: tau ! Reduced inverse temperature
REAL, INTENT(in) :: delta ! Reduced density
TYPE(expon_type), INTENT(in) :: c ! Coefficients
! f(0,0) is n*(tau**t)*(delta**d)*exp(-delta**l)
! f(i,:) is differentiated i times with respect to tau, and then multiplied by tau**i
! f(:,j) is differentiated j times with respect to delta, and then multiplied by delta**j
f(:,:) = c%n * (tau**c%t) * (delta**c%d) * EXP(-delta**c%l)
f(1,:) = f(1,:) * c%t
f(2,:) = f(2,:) * c%t * ( c%t - 1.0 )
f(:,1) = f(:,1) * (c%d-c%l*delta**c%l)
f(:,2) = f(:,2) * ( (c%d-c%l*delta**c%l) * (c%d-1.0-c%l*delta**c%l) - (c%l**2)*delta**c%l )
END FUNCTION expon
FUNCTION gauss ( tau, delta, c ) RESULT ( f )
IMPLICIT NONE
REAL, DIMENSION(0:2,0:2) :: f ! Returns Gaussian function and scaled derivatives
REAL, INTENT(in) :: tau ! Reduced inverse temperature
REAL, INTENT(in) :: delta ! Reduced density
TYPE(gauss_type), INTENT(in) :: c ! Coefficients
! f(0,0) is n*(tau**t)*exp(-beta*(tau-gamma)**2)*(delta**d)*exp(-eta*(delta-epsilon)**2)
! f(i,:) is differentiated i times with respect to tau, and then multiplied by tau**i
! f(:,j) is differentiated j times with respect to delta, and then multiplied by delta**j
f(:,:) = c%n*(tau**c%t)*EXP(-c%beta*(tau-c%gamma)**2)*(delta**c%d)*EXP(-c%eta*(delta-c%epsilon)**2)
f(1,:) = f(1,:) * ( c%t - 2.0*c%beta*tau*(tau-c%gamma) )
f(2,:) = f(2,:) * ( ( c%t - 2.0*c%beta*tau*(tau-c%gamma) )**2 - c%t - 2*c%beta*tau**2 )
f(:,1) = f(:,1) * ( c%d - 2.0*c%eta*delta*(delta-c%epsilon) )
f(:,2) = f(:,2) * ( ( c%d - 2.0*c%eta*delta*(delta-c%epsilon) )**2 - c%d - 2*c%eta*delta**2 )
END FUNCTION gauss
FUNCTION a_res_full ( temp, rho ) RESULT ( a )
IMPLICIT NONE
REAL, DIMENSION(0:2,0:2) :: a ! Reduced residual free energy and scaled derivatives
REAL, INTENT(in) :: temp ! Temperature in LJ units
REAL, INTENT(in) :: rho ! Density in LJ units
! This routine is for the full Lennard-Jones potential
! In a(i,j), index i refers to the tau-derivative and index j to the delta-derivative
! The derivatives are multiplied by the corresponding powers of tau and delta
! a(i,:) is differentiated i times with respect to tau, and then multiplied by tau**i
! a(:,j) is differentiated j times with respect to delta, and then multiplied by delta**j
REAL :: tau, delta
INTEGER :: i
REAL, PARAMETER :: temp_crit = 1.32 ! Critical temperature
REAL, PARAMETER :: rho_crit = 0.31 ! Critical density
tau = temp_crit / temp ! Reduced inverse temperature
delta = rho / rho_crit ! Reduced density
! Coefficients taken from Table 2 of
! M Thol, G Rutkai, A Koester, R Lustig, R Span, J Vrabec, J Phys Chem Ref Data 45, 023101 (2016)
ALLOCATE ( cp(6) )
cp%n = [ 0.005208073, 2.186252, -2.161016, 1.452700, -2.041792, 0.18695286 ]
cp%t = [ 1.000, 0.320, 0.505, 0.672, 0.843, 0.898 ]
cp%d = [ 4.0, 1.0, 1.0, 2.0, 2.0, 3.0 ]
ALLOCATE ( ce(6) )
ce%n = [ -0.090988445, -0.49745610, 0.10901431, -0.80055922, -0.56883900, -0.62086250 ]
ce%t = [ 1.294, 2.590, 1.786, 2.770, 1.786, 1.205 ]
ce%d = [ 5.0, 2.0, 2.0, 3.0, 1.0, 1.0 ]
ce%l = [ 1.0, 2.0, 1.0, 2.0, 2.0, 1.0 ]
ALLOCATE ( cg(11) )
cg%n = [ -1.4667177, 1.8914690, -0.13837010, -0.38696450, 0.12657020, 0.6057810, &
& 1.1791890, -0.47732679, -9.9218575, -0.57479320, 0.0037729230 ]
cg%t = [ 2.830, 2.548, 4.650, 1.385, 1.460, 1.351, 0.660, 1.496, 1.830, 1.616, 4.970 ]
cg%d = [ 1.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 2.0, 3.0, 1.0, 1.0 ]
cg%eta = [ 2.067, 1.522, 8.82, 1.722, 0.679, 1.883, 3.925, 2.461, 28.2, 0.753, 0.82 ]
cg%beta = [ 0.625, 0.638, 3.91, 0.156, 0.157, 0.153, 1.16, 1.73, 383.0, 0.112, 0.119 ]
cg%gamma = [ 0.71, 0.86, 1.94, 1.48, 1.49, 1.945, 3.02, 1.11, 1.17, 1.33, 0.24 ]
cg%epsilon = [ 0.2053, 0.409, 0.6, 1.203, 1.829, 1.397, 1.39, 0.539, 0.934, 2.369, 2.43 ]
a = 0.0
DO i = 1, SIZE(cp)
a = a + power ( tau, delta, cp(i) )
END DO
DO i = 1, SIZE(ce)
a = a + expon ( tau, delta, ce(i) )
END DO
DO i = 1, SIZE(cg)
a = a + gauss ( tau, delta, cg(i) )
END DO
DEALLOCATE ( cp, ce, cg )
END FUNCTION a_res_full
FUNCTION a_res_cutshift ( temp, rho ) RESULT ( a )
IMPLICIT NONE
REAL, DIMENSION(0:2,0:2) :: a ! Reduced residual free energy and scaled derivatives
REAL, INTENT(in) :: temp ! Temperature in LJ units
REAL, INTENT(in) :: rho ! Density in LJ units
! This routine is for the Lennard-Jones potential cut-and-shifted at 2.5 sigma
! In a(i,j), index i refers to the tau-derivative and index j to the delta-derivative
! The derivatives are multiplied by the corresponding powers of tau and delta
! a(i,:) is differentiated i times with respect to tau, and then multiplied by tau**i
! a(:,j) is differentiated j times with respect to delta, and then multiplied by delta**j
REAL :: tau, delta
INTEGER :: i
REAL, PARAMETER :: temp_crit = 1.086 ! Critical temperature
REAL, PARAMETER :: rho_crit = 0.319 ! Critical density
tau = temp_crit / temp ! Reduced inverse temperature
delta = rho / rho_crit ! Reduced density
! Coefficients taken from Table 1 of
! M Thol, G Rutkai, R Span, J Vrabec, R Lustig, Int J Thermophys 36, 25 (2015)
ALLOCATE ( cp(6) )
cp%n = [ 0.015606084, 1.7917527, -1.9613228, 1.3045604, -1.8117673, 0.15483997 ]
cp%t = [ 1.000, 0.304, 0.583, 0.662, 0.870, 0.870 ]
cp%d = [ 4.0, 1.0, 1.0, 2.0, 2.0, 3.0 ]
ALLOCATE ( ce(6) )
ce%n = [ -0.094885204, -0.20092412, 0.11639644, -0.50607364, -0.58422807, -0.47510982 ]
ce%t = [ 1.250, 3.000, 1.700, 2.400, 1.960, 1.286 ]
ce%d = [ 5.0, 2.0, 2.0, 3.0, 1.0, 1.0 ]
ce%l = [ 1.0, 2.0, 1.0, 2.0, 2.0, 1.0 ]
ALLOCATE ( cg(9) )
cg%n = [ 0.0094333106, 0.30444628, -0.0010820946, -0.099693391, 0.0091193522, &
& 0.12970543, 0.023036030, -0.082671073, -2.2497821 ]
cg%t = [ 3.600, 2.080, 5.240, 0.960, 1.360, 1.655, 0.900, 0.860, 3.950 ]
cg%d = [ 1.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 2.0, 3.0 ]
cg%eta = [ 4.70, 1.92, 2.70, 1.49, 0.65, 1.73, 3.70, 1.90, 13.2 ]
cg%beta = [ 20.0, 0.77, 0.5, 0.8, 0.4, 0.43, 8.0, 3.3, 114.0 ]
cg%gamma = [ 1.0, 0.5, 0.8, 1.5, 0.7, 1.6, 1.3, 0.6, 1.3 ]
cg%epsilon = [ 0.55, 0.7, 2.0, 1.14, 1.2, 1.31, 1.14, 0.53, 0.96 ]
a = 0.0
DO i = 1, SIZE(cp)
a = a + power ( tau, delta, cp(i) )
END DO
DO i = 1, SIZE(ce)
a = a + expon ( tau, delta, ce(i) )
END DO
DO i = 1, SIZE(cg)
a = a + gauss ( tau, delta, cg(i) )
END DO
DEALLOCATE ( cp, ce, cg )
END FUNCTION a_res_cutshift
END MODULE eos_lj_module