-
Notifications
You must be signed in to change notification settings - Fork 16
/
main.py
422 lines (354 loc) · 19.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""
Created on June 26, 2019
@author: Alireza Shamsoshoara
@Project: Multi Agent Reinforcement Learning (Independent Agents)
An Autonomous Spectrum Management Scheme for Unmanned Aerial Vehicle Networks in Disaster Relief Operations
Paper: https://ieeexplore.ieee.org/abstract/document/9046033
Arxiv: https://arxiv.org/abs/1911.11343
@Northern Arizona University
This project is developed and tested with Python 3.6 using pycharm on Ubuntu 18.04
"""
#########################################################
# import libraries
# General Modules
import os
import time
import numpy as np
from random import seed
from copy import deepcopy
import matplotlib.pyplot as plt
# Customized Modules
from config import Size
from config import Config_Dim as Dim
from config import Config_General as General
from config import Config_RL
from config import Config_Path
from config import Float_Precision
from config import Config_Power as Power
from csi import get_csi
import csi as csi_module
import location_gen as loc
from utility_general import singleutil
from gain_util_jain import reward_val_single
from statefromloc import getstateloc
from action_sel import action_explore
from action_sel import action_exploit
from findq import find_max_q_next_single
from energy import init_energy
from energy import update_energy_movement
from energy import update_energy_transmission
from basestation import regioncenter
from basestation import search_primary_region
from basestation import search_primary_uav
from basestation import search_secondary_uav
from basestation import random_primary_uav
from basestation import random_secondary_uav_search_region
from basestation import random_primary_region
from basestation import random_secondary_uav_random_region
from basestation import search_secondary_uav_random_region
from plotlocation import update2d_figure
from statefromloc import get_region_state_from_general
from statefromloc import get_general_loc_from_region
#########################################################
# General Flags
Flag_Print = False
#########################################################
# Scenario Definition
print(General, "Size = ", Size)
num_UAV = General.get('NUM_UAV')
num_Eps = General.get('NUM_EPS')
num_Step = General.get('NUM_STEP')
num_Pkt = General.get('NUM_PKT')
num_Run = General.get('NUM_RUN')
Region = Dim.get('region')
pathDist = Config_Path.get('PathDist')
pathH = Config_Path.get('PathH')
pathEnergy = Config_Path.get('pathEnergy')
location_init, fig_loc, ax_loc = \
loc.location(num_UAV,
Dim.get('Height'), Dim.get('Length'), Dim.get('Width'),
Dim.get('UAV_L_MAX'), Dim.get('UAV_L_MIN'),
Dim.get('UAV_W_MAX'), Dim.get('UAV_W_MIN'), pathDist,
General.get('Location_SaveFile'), General.get('PlotLocation'), Dim.get('Divider'))
loc_dict = deepcopy(location_init)
Length = Dim.get('Length')
Width = Dim.get('Width')
Height = Dim.get('Height')
Divider = Dim.get('Divider')
region_length = int(Size/int(np.sqrt(Region)))
CSI_Param = csi_module.load_csi(num_UAV, loc_dict, pathH, General.get('CSI_SaveFile'))
energy_init = init_energy(num_UAV, Power.get('MinEnergy'), Power.get('MaxEnergy'), General.get('Energy_SaveFile'),
pathEnergy)
energy_init = np.round(energy_init, Float_Precision)
reg_center, reg_ids = regioncenter(Size, Region, Dim.get('Height'))
# Find the nearest region to the Primary receiver (Checked!)
min_reg_dist, min_reg_idx, primary_region_id = search_primary_region(reg_center, loc_dict, reg_ids)
if General.get('Mode') == 2 or General.get('Mode') == 3:
min_reg_idx, primary_region_id = random_primary_region(reg_ids)
residual_energy_after_flight = np.zeros([num_UAV, 1], dtype=float)
pu_uav_energy_idx = -1
if General.get('PlotLocation'):
figure_2d_init = update2d_figure(None, location_init, Width, region_length)
# Normal Mode for all UAVs
if General.get('Mode') == 0 or General.get('Mode') == 3 or General.get('Mode') == 4:
# Do search to find the best UAV for the Primary user (Just one UAV)(Consider residual energy and the distance for
# all UAVs to the primary user region)
nearest_uav_idx, pu_uav_energy_idx, residual_energy_after_flight = search_primary_uav(reg_center, min_reg_idx,
primary_region_id, loc_dict,
num_UAV, energy_init,
Power.get('mob_consump_inter')
)
# Do random allocation for the primary uav based on the primary region
if General.get('Mode') == 1 or General.get('Mode') == 2:
pu_uav_energy_idx, residual_energy_after_flight = random_primary_uav(reg_center, min_reg_idx, loc_dict, num_UAV,
energy_init, Power.get('mob_consump_inter'))
# Update the energy for the primary uav which moved from its initial location to the primary region
energy_before_RL = np.zeros([num_UAV], dtype=float)
energy_before_RL[:] = deepcopy(energy_init) # Initial energy
energy_before_RL[pu_uav_energy_idx] = residual_energy_after_flight[pu_uav_energy_idx] # Initial Energy after the PU
# Flight
# Update the location for the primary uav which moved from its initial to the primary region
X_U = loc_dict.get('X_U')
Y_U = loc_dict.get('Y_U')
Z_U = loc_dict.get('Z_U')
X_U[pu_uav_energy_idx] = reg_center[min_reg_idx, 0]
Y_U[pu_uav_energy_idx] = reg_center[min_reg_idx, 1]
Z_U[pu_uav_energy_idx] = reg_center[min_reg_idx, 2]
all_uavs_region = np.zeros([num_UAV], dtype=int)
su_uav_id = np.zeros([num_UAV-1], dtype=int)
# Do Search in the UAV database to locate them in the proper regions (rest of the UAVs). It seems that it can be solved
# using biportite maximum graph matching problem
# Initialize Energy after the SUs Flight
# Normal Mode for all UAVs
if General.get('Mode') == 0 or General.get('Mode') == 4:
energy_before_RL[:], all_uavs_region, su_uav_id, su_regions_id = \
search_secondary_uav(num_UAV, min_reg_idx, primary_region_id, pu_uav_energy_idx, reg_center,
energy_before_RL[:], loc_dict, Power.get('mob_consump_inter'), reg_ids)
if General.get('Mode') == 1:
energy_before_RL[:], all_uavs_region, su_uav_id, su_regions_id = \
random_secondary_uav_search_region(num_UAV, min_reg_idx, pu_uav_energy_idx, reg_center, energy_before_RL[:],
loc_dict, Power.get('mob_consump_inter'))
if General.get('Mode') == 2:
energy_before_RL[:], all_uavs_region, su_uav_id, su_regions_id = \
random_secondary_uav_random_region(num_UAV, min_reg_idx, pu_uav_energy_idx, reg_center, energy_before_RL[:],
loc_dict, Power.get('mob_consump_inter'), reg_ids)
if General.get('Mode') == 3:
energy_before_RL[:], all_uavs_region, su_uav_id, su_regions_id = \
search_secondary_uav_random_region(num_UAV, min_reg_idx, pu_uav_energy_idx, reg_center, energy_before_RL[:],
loc_dict, Power.get('mob_consump_inter'), reg_ids)
# updated_fig2 = update3d_figure(updated_fig, loc_dict, Height, Width)
# figure_2d2 = update2d_figure(None, location_init, Width)
if General.get('PlotLocation'):
figure_2d = update2d_figure(None, loc_dict, Width, region_length)
gamma = Config_RL.get('gamma')
alpha = Config_RL.get('alpha')
epsilon = Config_RL.get('epsilon')
const_greedy = Config_RL.get('const_greedy')
num_F = 1
num_R = num_UAV - num_F
Dim_L = Length
Dim_W = Width
num_states = Dim_L * Dim_W
num_action = 5 # 0: Up, 1: down, 2: Left, 3: Right, 4: No Movement
action_list = [0, 1, 2, 3, 4] # 0: Up, 1: down, 2: Left, 3: Right, 4: No Movement
num_Region_states = int(Size / int(np.sqrt(Region)))**2
region_size = int(np.sqrt(num_Region_states))
#########################################################
# Initialization
for Run in range(0, num_Run):
u_primary = np.zeros([num_Eps, num_Step])
u_fusion = np.zeros([num_Eps, num_Step])
u_network = np.zeros([num_Eps, num_Step, num_UAV])
sum_utility = np.zeros([num_Eps, num_Step])
reward = np.zeros([num_Eps, num_Step, num_UAV])
delta_upn = np.zeros([num_Eps, num_Step])
delta_ufn = np.zeros([num_Eps, num_Step])
delta_up = np.zeros([num_Eps, num_Step])
delta_un = np.zeros([num_Eps, num_Step])
delta_utility = np.zeros([num_Eps, num_Step, num_UAV])
jainVal = np.zeros([num_Eps, num_Step])
jain_scaled = np.zeros([num_Eps, num_Step])
state_new_reg = np.zeros([num_UAV], dtype=int)
# TODO: Checked!: Zero Values for energy array.
energy = np.zeros([num_Eps, num_Step, num_UAV], dtype=float)
#########################################################
# Initialization for the MA RL algorithm
X_Mat = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
Y_Mat = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
X_Mat_Reg = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
Y_Mat_Reg = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
State_Mat = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
next_state_index = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
next_state_index_region = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
action = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
task_matrix = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
prev_task = np.zeros([num_Eps, num_Step, num_UAV], dtype=int)
task_diff = np.zeros([num_Eps, num_Step], dtype=int)
seed(a=None)
#########################################################
# Main Function of the Simulation
qVal = np.zeros([num_UAV, num_Region_states, num_action])
timer = 0
for Eps in range(0, num_Eps):
timer = time.clock()
number_meet = np.zeros([num_UAV, num_Region_states], dtype=int)
X_U = deepcopy(loc_dict.get('X_U'))
Y_U = deepcopy(loc_dict.get('Y_U'))
# TODO: Checked!: Reading the initial values for the energy like the location.
energy[Eps, 0, :] = deepcopy(energy_before_RL)
for Step in range(0, num_Step):
if num_Eps == 1:
print(" -----------------Epoch = %d, Step = %d ----------------- " % (Eps, Step))
X_Mat[Eps, Step, :] = np.squeeze(X_U)
Y_Mat[Eps, Step, :] = np.squeeze(Y_U)
state_index_general = getstateloc(X_U, Y_U, Size)
state_index_region, X_Mat_Reg[Eps, Step, :], Y_Mat_Reg[Eps, Step, :] = \
get_region_state_from_general(state_index_general, Size, region_size)
X_U_Reg = deepcopy(X_Mat_Reg[Eps, Step, :])
Y_U_Reg = deepcopy(Y_Mat_Reg[Eps, Step, :])
exploration_current_state = deepcopy(state_index_region)
State_Mat[Eps, Step, :] = np.squeeze(exploration_current_state)
number_meet[:, state_index_region] += 1
if Step > 0:
prev_task[Eps, Step, :] = task_matrix[Eps, Step-1, :].copy(order='C')
for UAV in range(0, num_UAV):
if np.random.rand() < epsilon or General.get('Mode') == 4:
###################
# Exploration
action[Eps, Step, UAV], X_U_Reg[UAV], Y_U_Reg[UAV], state_new_reg[UAV] = \
action_explore(X_U[UAV], Y_U[UAV], action_list, Size, exploration_current_state[UAV], UAV,
region_size, X_U_Reg[UAV], Y_U_Reg[UAV])
X_U[UAV], Y_U[UAV] = get_general_loc_from_region(X_U_Reg[UAV], Y_U_Reg[UAV], all_uavs_region[UAV],
region_size, Size)
else:
###################
# Exploitation
action[Eps, Step, UAV], X_U_Reg[UAV], Y_U_Reg[UAV], state_new_reg[UAV] = \
action_exploit(X_U[UAV], Y_U[UAV], action_list, Size, exploration_current_state[UAV],
qVal[UAV, :, :], region_size, X_U_Reg[UAV], Y_U_Reg[UAV])
X_U[UAV], Y_U[UAV] = get_general_loc_from_region(X_U_Reg[UAV], Y_U_Reg[UAV], all_uavs_region[UAV],
region_size, Size)
if UAV in su_uav_id: # Fusion = 0
task_matrix[Eps, Step, UAV] = 0
else: # Relay = 1
task_matrix[Eps, Step, UAV] = 1
task_diff[Eps, Step] = np.sum(np.not_equal(task_matrix[Eps, Step, :], prev_task[Eps, Step, :]))
# TODO: Checked!: Updating the energy for each UAV after changing its location
if Step > 0:
energy[Eps, Step, :] = energy[Eps, Step-1, :]
energy[Eps, Step, :] = update_energy_movement(energy[Eps, Step, :], action[Eps, Step, :],
Power.get('mob_consump_intra'))
if Flag_Print:
print(' Current General State = ', np.squeeze(state_index_general), '\n Current Region State = ',
np.squeeze(state_index_region))
print(' Current X = ', X_Mat[Eps, Step, :])
print(' Current Y = ', Y_Mat[Eps, Step, :])
print(' Actions = ', np.squeeze(action[Eps, Step, :]))
print(' New Region State = ', state_new_reg)
print(' New X = ', np.squeeze(X_U))
print(' New Y = ', np.squeeze(Y_U))
print(' New X_Reg = ', X_U_Reg)
print(' New Y_Reg = ', Y_U_Reg)
print(' Tasks = ', np.squeeze(task_matrix[Eps, Step, :]))
#################################
# Updating utilities
csi_coef = get_csi(num_UAV, loc_dict, np.squeeze(X_U), np.squeeze(Y_U))
u_network[Eps, Step, :] = singleutil(task_matrix[Eps, Step, :], csi_coef, General, Power)
# TODO: Checked!: Updating the energy for each UAV after transmission
energy[Eps, Step, :] = update_energy_transmission(energy[Eps, Step, :], Power.get('trans_consump'))
uav_r = np.sum(task_matrix[Eps, Step, :]) # 1 = Relay, 0 = Fusion
uav_r = int(uav_r)
uav_f = int(General.get('NUM_UAV') - uav_r)
sum_utility[Eps, Step] = np.sum(u_network[Eps, Step, :])
# TODO: Checked!: Consider the energy in Rewarding to have less mobility, in order to save more energy
if Step == 0:
reward[Eps, Step, :] = \
reward_val_single(u_network[Eps, Step, :], u_network[Eps, 0, :], sum_utility[Eps, Step],
sum_utility[Eps, 0], energy[Eps, Step, :], energy_before_RL,
Power.get('mob_consump_intra'))
else:
reward[Eps, Step, :] = \
reward_val_single(u_network[Eps, Step, :], u_network[Eps, 0: Step, :], sum_utility[Eps, Step],
sum_utility[Eps, 0: Step], energy[Eps, Step, :], energy[Eps, Step-1, :],
Power.get('mob_consump_intra'))
if Flag_Print:
print(" Utility Values = ", np.squeeze(u_network[Eps, Step, :]))
print(" SUM Utility = ", sum_utility[Eps, Step])
print(" Energy = ", np.squeeze(energy[Eps, Step, :]))
print("Reward = ", reward[Eps, Step, :])
#################################
# Updating Q-Table and Q values
next_state_index[Eps, Step, :] = np.squeeze(getstateloc(X_U, Y_U, Size))
next_state_index_region[Eps, Step, :], _, _ = get_region_state_from_general(next_state_index[Eps, Step, :],
Size, region_size)
maxQ_NextState = np.zeros([num_UAV, 1], dtype=float)
for uav in np.arange(num_UAV):
maxQ_NextState[uav] = find_max_q_next_single(qVal[uav, :, :], next_state_index_region[Eps, Step, uav],
X_U_Reg[uav], Y_U_Reg[uav], action_list, region_size)
qVal[uav, State_Mat[Eps, Step, uav], action[Eps, Step, uav]] = \
(1-alpha) * qVal[uav, State_Mat[Eps, Step, uav], action[Eps, Step, uav]] + alpha * \
(reward[Eps, Step, uav] + gamma * maxQ_NextState[uav])
if Flag_Print:
print("QVal = ", np.squeeze(qVal[uav, State_Mat[Eps, Step, uav], action[Eps, Step, uav]]))
# End of the Each Step
print(" -------Run = %d ----- Epoch = %d ----------------- Duration = %f " % (Run, Eps, time.clock() - timer))
# ********************************
# End of the Each Episode
if General.get('PlotResult'):
if num_Eps > 1:
plt.figure()
plt.plot(range(0, num_Eps), np.sum(sum_utility, axis=1), markersize='10', color='blue')
plt.grid(True)
plt.ylabel('Sum Utility')
plt.xlabel('Episodes')
plt.show(block=False)
plt.figure()
plt.plot(range(0, num_Eps), 100 * np.sum(u_network[:, :, 4], axis=1), markersize='5')
plt.grid(True)
plt.ylabel('individual Utility')
plt.xlabel('Episodes')
plt.show(block=False)
else:
plt.figure()
plt.plot(range(0, num_Step), np.mean(reward[:, :, 0], axis=0), markersize='10', color='blue')
plt.grid(True)
plt.ylabel('reward')
plt.xlabel('Steps')
plt.savefig('first.png')
plt.show(block=False)
plt.figure()
plt.plot(range(0, num_Step), np.mean(task_diff, axis=1), markersize='10', color='blue')
plt.grid(True)
plt.ylabel('Number of Switch')
plt.xlabel('Steps')
# plt.savefig('first.png')
plt.show(block=False)
plt.figure()
plt.plot(range(0, num_Step), sum_utility[199, :], markersize='10')
plt.grid(True)
plt.ylabel('Sum Utility')
plt.xlabel('Steps')
# plt.savefig('first.png')
plt.show(block=False)
plt.figure()
plt.plot(range(0, num_Step), np.mean(np.cumsum(reward, axis=0), axis=1), markersize='10', color='blue')
plt.grid(True)
plt.ylabel('Accumulative reward')
plt.xlabel('Steps')
# plt.savefig('first.png')
plt.show(block=False)
if General.get('SaveOutput'):
path_save = 'SimulationData/Mode_%d/Grid_Size_%d' % (General.get('Mode'), Size)
if not os.path.exists(path_save):
os.makedirs(path_save)
# outputFile_win = 'C:\SimulationData\Out_greedy_Size_%d_Run_%d_Eps_%d_Step_%d.npz' % (Size, Run, num_Eps,
# num_Step)
outputFile_linux = \
'SimulationData/Mode_%d/Grid_Size_%d/Out_UAV_%d_greedy_Size_%d_Region_%d_Run_%d_' \
'Eps_%d_Step_%d.npz' % (General.get('Mode'), Size, num_UAV, Size, Region, Run, num_Eps, num_Step)
np.savez(outputFile_linux, u_network=u_network, sum_utility=sum_utility, reward=reward, X_Mat=X_Mat,
Y_Mat=Y_Mat, X_Mat_Reg=X_Mat_Reg, Y_Mat_Reg=Y_Mat_Reg, energy=energy, State_Mat=State_Mat,
action=action, task_matrix=task_matrix, next_state_index=next_state_index, qVal=qVal,
next_state_index_region=next_state_index_region)
# End of the Each Run
seed(1)