-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1539.kth-missing-positive-number.cpp
95 lines (92 loc) · 2.05 KB
/
1539.kth-missing-positive-number.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
* @lc app=leetcode id=1539 lang=cpp
*
* [1539] Kth Missing Positive Number
*
* https://leetcode.com/problems/kth-missing-positive-number/description/
*
* algorithms
* Easy (53.36%)
* Likes: 748
* Dislikes: 30
* Total Accepted: 61.7K
* Total Submissions: 111.9K
* Testcase Example: '[2,3,4,7,11]\n5'
*
* Given an array arr of positive integers sorted in a strictly increasing
* order, and an integer k.
*
* Find the k^th positive integer that is missing from this array.
*
*
* Example 1:
*
*
* Input: arr = [2,3,4,7,11], k = 5
* Output: 9
* Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The
* 5^th missing positive integer is 9.
*
*
* Example 2:
*
*
* Input: arr = [1,2,3,4], k = 2
* Output: 6
* Explanation: The missing positive integers are [5,6,7,...]. The 2^nd missing
* positive integer is 6.
*
*
*
* Constraints:
*
*
* 1 <= arr.length <= 1000
* 1 <= arr[i] <= 1000
* 1 <= k <= 1000
* arr[i] < arr[j] for 1 <= i < j <= arr.length
*
*
*/
// @lc code=start
class Solution {
public:
int findKthPositive1(vector<int>& arr, int k) {
vector<bool> v(1001, false);
for (int i = 0; i < arr.size(); ++i) {
v[arr[i]] = true;
}
int count = 0;
int i = 1;
while (true) {
if (i > 1000 || !v[i])
++count;
if (count == k)
break;
++i;
}
return i;
}
int findKthPositive2(vector<int>& arr, int k) {
int i = 1;
for (; i < arr.size(); ++i) {
if (arr[i] - i - 1 >= k) {
break;
}
}
return k + i;
}
int findKthPositive(vector<int>& arr, int k) {
int i = 0;
int left = 0, right = arr.size();
while (left < right) {
int mid = left + ((right - left) >> 1);
if (arr[mid] - mid - 1 >= k)
right = mid;
else
left = mid + 1;
}
return k + left;
}
};
// @lc code=end