Skip to content

Latest commit

 

History

History
788 lines (621 loc) · 16.8 KB

README.md

File metadata and controls

788 lines (621 loc) · 16.8 KB

Cuj

Runtime program generator embedded in C++

[TOC]

Building

Requirements

  • LLVM 11.1.0 and (optional) CUDA 11.5 (other versions may work but haven't been tested)
  • A C++20-compatible compiler

Building with CMake

git clone https://github.com/AirGuanZ/cuj.git
cd cuj
mkdir build
cd build
cmake -DLLVM_DIR="llvm_cmake_config_dir" ..

To add CUJ into a CMake project, simply use ADD_SUBDIRECTORY and link against cuj.

A Quick Example

Exponentiation by squaring is a fast algorithm for computing positive integer powers:

int64_t pow(int32_t x, uint32_t n)
{
    int64_t result = 1;
    int64_t base = x;
    while(n)
    {
        if(n & 1)
            result *= base;
        base *= base;
        n >>= 1;
    }
    return result;
}

However, we always have a faster method pow_n for a fixed n. For example, the following function is better for computing pow(x, 5) than general pow:

int64_t pow5(int32_t x)
{
    int64_t b1 = x;
    int64_t b2 = b1 * b1;
    int64_t b4 = b2 * b2;
    return b4 * b1;
}

The program may need to read n from a configuration file or user input, then evaluate pow(x, n) for millions of different x. The problem is: how can we efficiently generate pow_n after reading n? Here are some solutions:

  • generate source code (in C, LLVM IR, etc) for computing pow_n, then compile it into executable machine code. When the algorithm becomes more complicated than pow, the generator itself also becomes hard to code.
  • use existing multi-stage programming tools/languages. However, to my knowledge, there is no practical MSP implementation for C/C++.

Now let's try to implement the generator with Cuj. Firstly create a Cuj context for holding everything:

ScopedModule cuj_module;

Then we create a Cuj function that computes pow_n, where n is read from user input:

uint32_t n = 0;
std::cout << "enter n: ";
std::cin >> n;
Function pow_n = [n](i32 x) mutable
{
    i64 result = 1;
    i64 base = x;
    while(n)
    {
        if(n & 1)
            result = result * base;
        base = base * base;
        n >>= 1;
    }
    return result;
};

Note that the variable x has type i32, which is a Cuj type representing int32_t. The pow_n algorithm almost have the same form of the above pow, except some of its unknown parts are replaced with their corresponding Cuj types, like int32_t x -> i32 x. Cuj will trace the execution of the lambda , and reconstruct the algorithm with the given n.

Now we can generate machine code for pow_n and query its function pointer:

// pow_n_func is a raw function pointer
MCJIT mcjit;
mcjit.generate(cuj_module);
auto pow_n_func = mcjit.get_function(pow_n);
// test output
std::cout << "n = " << n << std::endl;
for(int i = 0; i <= 9; ++i)
    std::cout << i << " ^ n = " << pow_n_func(i) << std::endl;

Enter 5, and we will get:

n = 5
0 ^ n = 0
1 ^ n = 1
2 ^ n = 32
...
8 ^ n = 32768
9 ^ n = 59049

Full source code of this example can be found in example/pow/main.cpp.

Function

Regular Function

Cuj provides various methods for defining functions. For example,

Function add_int32 = [&](i32 a, i32 b) { return a + b; };

This defines a Cuj function returning sum of two 32-bit signed integers. Note that decltype(add_int32) is actually Function<i32(i32)>, whose template argument is automatically deduced by the C++ compiler.

We can also define a Cuj function with custom symbol name.

auto add_int32 = function("add", [&](i32 a, i32 b) { return a + b; });

The custom symbol name "add" can be used for retrieving function pointer after the whole Cuj module is compiled to machine code using MCJIT backend, or used for finding kernel in PTX code generated by PTXGenerator backend.

We can directly call Cuj functions in other Cuj functions,

Function pow2 = [&](i32 x) { return x * x; };
Function pow4 = [&](i32 x) { return pow2(x) * pow2(x); };

Forward Declaration

To define a recursive function in Cuj, we need to declare it before using.

auto fib = declare<i32(i32)>("fib"); // declare fib with full signature
fib.define([&](i32 i)                // define fib's function body
           {
               i32 result;
               $if(i <= 1)
               {
                   result = i;
               }
               $else
               {
                   result = fib(i - 1) + fib(i - 2);
               };
               return result;
           });

CUDA Kernel

auto my_cuda_kernel = kernel(
    "optional_kernel_symbol_name",
	[](ptr<f32> a, ptr<f32> b, ptr<f32> c, i32 n)
    {
        i32 idx = cstd::thread_idx_x() + cstd::block_dim_x() * cstd::block_idx_x();
        $if(idx < n)
        {
            c[idx] = a[idx] + b[idx];
        };
    });

Module

Any compiled Cuj function must be registered in a cuj::Module. There is a global thread-local module pointer in Cuj, which will be used by current Cuj operations. We can use Module::set_current_module to manipulate this pointer.

Module my_cuj_module;
Module::set_current_module(&my_cuj_module);
...
Module::set_current_module(nullptr);

We can also use scoped guard provided by Cuj. The following code is equivalent to the above.

{
    ScopedModule my_cuj_module;
    ...
}

Variable

Arithmetic

i32 x = 0;
i32 y = x + 1;
f32 fx = f32(x * 4) - 3.0f;

Cuj provides following arithmetic types:

  • i8/i16/i32/i64: 8/16/32/64-bit signed integer
  • u8/u16/u32/u64: 8/16/32/64-bit unsigned integer
  • f32/f64: 32/64-bit floating-point number
  • boolean: binary type

Note that Cuj doesn't allow implicit conversion between values of different arithmetic types. Use dst_type(src_var) to perform the explicit cast.

Array

arr<i32, 4> a;
for(size_t i = 0; i < a.size(); ++i)
    a[i] = i * i;
// a becomes { 0, 1, 4, 9 }

Class

We can map a C++ class to a Cuj class using CUJ_CLASS macro.

struct Vec3 { float x, y, z; };
CUJ_CLASS(Vec3, x, y, z);

Now cxx<Vec3> is a Cuj class that can be used in any Cuj function. It has the same non-static members as Vec3, except that they are all replaced with their corresponding Cuj types.

Function make_cuj_vec3 = [](f32 x, f32 y, f32 z)
{
    cxx<Vec3> v;
    v.x = x;
    v.y = y;
    v.z = z;
    return v;
};

We can also add custom member functions to Cuj class.

struct Vec3 { float x, y, z; };
CUJ_CLASS_EX(Vec3, x, y, z)
{
    CUJ_BASE_CONSTRUCTORS
    explicit Vec3(f32 v) : Vec3(v, v, v) { }
    Vec3(f32 _x, f32 _y, f32 _z) { x = _x; y = _y; z = _z; }
    f32 length() const { return cstd::sqrt(x * x + y * y + z * z); }
};

Note. In default, all Cuj classes are trivially-copyable. Cuj use this assumption optimize class object copying. If custom copy constructor or assignment operator are provided, we need to use macro CUJ_NONE_TRIVIALLY_COPYABLE to indicate that this class is not trivially-copyable.

struct A { ... };
CUJ_PROXY_CLASS_EX(AProxy, A, ...)
{
    CUJ_BASE_CONSTRUCTORS
    CUJ_NONE_TRIVIALLY_COPYABLE
    AProxy(const AProxy &other) { ... }
    AProxy &operator=(const AProxy &other) { ... }
};

Custom class alignment can be specified with CUJ_CLASS_ALIGNMENT:

CUJ_CLASS_EX(...)
{
    CUJ_CLASS_ALIGNMENT(128) // alignas(128)
    ...
};

We can also define a new Cuj class without relying on existing C++ class:

CUJ_CLASS_BEGIN(MyCujClass)
    CUJ_CLASS_ALIGNMENT(64) // optional
    CUJ_MEMBER_VARIABLE(i32, x)
    CUJ_MEMBER_VARIABLE(f32, y)
CUJ_CLASS_END

Pointer

// ptr<i32> can be written as ptr
// as 'i32' can be automatically deduced
i32 x = 0;
ptr<i32> px = x.address();
*px = 1; // x becomes 1

We can also use -> to access members of pointed Cuj class object.

cxx<Vec3> v(1.0f, 2.0f, 3.0f);
ptr pv = v.address();
f32 x = (*pv).x;
f32 y = pv->y;
f32 len = pv->length();

Reference

References in Cuj can be viewed as immutable pointers.

i32 a = 0;
ref<i32> ra = a; // we can write 'ref' here as '<i32>' can be automatically deduced
ra = 1; // a becomes 1

cxx<Vec3> v;
ref rv = v;
rv.x = 1; // v.x becomes 1

ptr pv = v.address();
ref rv2 = *pv; // refer to dereferenced pointer

General

Use var to define Cuj variables or ref for references when actual types can be automacially deduced by the C++ compiler.

var a = 1;           // a: var<i32>
var b = 2.0f;        // b: var<f32>
var c = f32(a) * b;  // c: var<f32>
ref d = a;           // d: ref<i32>
var e = a.address(); // e: var<ptr<i32>>
ref f = *e;          // f: ref<i32>

var<T> can simply be treated like T.

Global Variable

ScopedModule mod;

// global variable can only be allocated within a module
auto global_i32_arr = allocate_global_memory<arr<i32, 16>>("my_symbol_name");

// constant memory in PTX
auto constant_f32 = allocate_constant_memory<f32>("constant_params");

Note that allocate_constant_memory allocates constant memory when using PTX backend and allocates normal global memory when using MC backend.

Const Data

// global const data
Function f = [](i32 x)
{
    ptr<i32> lut = const_data<i32>(std::array{ 1, 4, 6, 3 });
    return lut[x];
};

// string literial
Function f2 = []
{
    cstd::print("%s\n", string_literial("hello, cuj!"));
};

Import Pointer

int32_t i;
// equvialent to bitcast<ptr<i32>>(u64(&i))
var p = import_pointer(&i);

Bitwise Cast

u64 x0 = ...;
var y0 = bitcast<ptr<f32>>(x0); // num to ptr

f32 x1 = ...;
var y1 = bitcast<i32>(x1); // num to num

ptr<f32> x2 = ...;
var y2 = bitcast<i64>(x2); // ptr to num

Control Flow

If

// a, b, c, d are Cuj variables
$if(0 <= a & a < 10)
{
    ...
}
$elif(b > 0 | c < 0)
{
    ...
}
$elif(!d)
{
    ...
}
$else
{
    ...
};

Note that Cuj doesn't provide && and || operator since short-circuit evaluation cannot be implemented by operator overloading.

Loop

$loop
{
    $if(...)
    {
        $continue;
    }
    $if(...)
    {
        $break;
    };
    ...
};

$while(...)
{
    ...
};

Switch

$switch(i) // i must be a Cuj integer
{
$case(0)
{
    ...
    $fallthrough;
};
$case(1)
{
    ...
};
$case(2)
{
    ...
};
$default // optional
{
    ...
};
};

Note that Cuj will automatically insert a break switch after each case body. We can use $fallthrough to avoid that.

Return

There are two methods to return a value in a Cuj function.

Native C++ Return

auto f = function([](i32 a, i32 b)
{
    i32 ret;
    $if(a < b) { ret = 1; }
    $else      { ret = 2 };
    return ret;
});

There should be only one return statement that exits the callable object defining the function body. Cuj will use return type of the callable object to infer return type of the Cuj function. Note that Cuj always treats reference types as non-reference ones in return type inference. Therefore, we need to specify the return type as reference in that case.

// returns i32 even through integers[index] is a reference
auto f1 = function([](ptr<i32> integers, i32 index)
{
    return integers[index];
});

// returns ref<i32>
auto f2 = function<ref<i32>>([](ptr<i32> integers, i32 index)
{
    return integers[index];
});

Cuj Return

We can also use $return(...) to generate a return statement in Cuj function. Cuj will not be able to infer the return type at compile time, so we need to specify the return type manually.

auto f = function([](i32 a, i32 b)
{
    $if(a < b) { $return(1); }
    $else      { $return(2); };
});

ExitScope

i32 inlined_native_func(i32 x)
{
    i32 ret;
    $scope
    {
        $if(x <= 0)
        {
            ret = 4;
            $exit_scope;
        };
        $if(x == 9)
        {
            ret = 99;
            $exit_scope;
        }
        ret = 100;
    };
    return ret;
}

auto f = function<i32>([&](i32 x)
{
    $if(x == 1000)
    {
        $return(1999);
    };
    $return(inlined_native_func(x));
});

Inline Asm

i32 x, y, z, w;
inline_asm_volatile(
	"...", // asm code
    { { "=r", x }, { "=r", y } }, // output constraints
    { { "r", z }, { "r", w } },   // input constraints
    { "cc" }                      // clobber constraints
);

Backend

MC

ScopedModule mod;
Function func = ...

MCJIT mcjit;
mcjit.generate(mod);
auto c_func_ptr = mcjit.get_function(func);

The type of c_func_ptr is automatically deduced by MCJIT::get_function. We can also specify a compatible type manually:

auto c_func_ptr = mcjit.get_function<i32(i32)>(func);

Or by using function symbol name, if we haven't store the Function object:

auto c_func_ptr = mcjit.get_function<i32(i32)>("func_symbol_name");

Note that when using Function object to query the C function pointer with manually-specified function type, Cuj will check whether the given type is compatible with the Function object. For example:

Function func = [](ref<i32> a, ptr<cxx<Vec3>> b, f32 c)
{
    ptr<f32> ret = ...
    return ret;
};
...
// decltype(c_func_ptr1) is float*(*)(int32_t*, Vec3*, float)
auto c_func_ptr1 = mcjit.get_function(func);
// decltype(c_func_ptr2) is void*(const int32_t*, const Vec3*, float)
auto c_func_ptr2 = mcjit.get_function<void*(const int32_t*, const Vec3*, float)>(func);
// compile error
auto c_func_ptr3 = mcjit.get_function<int32_t(int32_t*, float, float)>(func);

All reference types are converted to corresponding pointers by MCJIT. The compatibility rules are:

T* <-> const T*
T* <-> void*
T* <-> char*
T* <-> signed char*
T* <-> unsigned char*

PTX

ScopedModule mod;
...
PTXGenerator ptx_gen;
ptx_gen.generate(mod);
const std::string ptx = ptx_gen.get_ptx();

Library

Math

// in namespace cuj::cstd

f32 abs(f32 x);
f32 mod(f32 x, f32 y);
f32 rem(f32 x, f32 y);
f32 exp(f32 x);
f32 exp2(f32 x);
f32 exp10(f32 x);
f32 log(f32 x);
f32 log2(f32 x);
f32 log10(f32 x);
f32 pow(f32 x, f32 y);
f32 sqrt(f32 x);
f32 rsqrt(f32 x);
f32 sin(f32 x);
f32 cos(f32 x);
f32 tan(f32 x);
f32 asin(f32 x);
f32 acos(f32 x);
f32 atan(f32 x);
f32 atan2(f32 y, f32 x);
f32 ceil(f32 x);
f32 floor(f32 x);
f32 trunc(f32 x);
f32 round(f32 x);
boolean isfinite(f32 x);
boolean isinf(f32 x);
boolean isnan(f32 x);

f64 abs(f64 x);
f64 mod(f64 x, f64 y);
f64 rem(f64 x, f64 y);
f64 exp(f64 x);
f64 exp2(f64 x);
f64 exp10(f64 x);
f64 log(f64 x);
f64 log2(f64 x);
f64 log10(f64 x);
f64 pow(f64 x, f64 y);
f64 sqrt(f64 x);
f64 rsqrt(f64 x);
f64 sin(f64 x);
f64 cos(f64 x);
f64 tan(f64 x);
f64 asin(f64 x);
f64 acos(f64 x);
f64 atan(f64 x);
f64 atan2(f64 y, f64 x);
f64 ceil(f64 x);
f64 floor(f64 x);
f64 trunc(f64 x);
f64 round(f64 x);
boolean isfinite(f64 x);
boolean isinf(f64 x);
boolean isnan(f64 x);

f32 min(f32 a, f32 b);
f32 max(f32 a, f32 b);

f64 min(f64 a, f64 b);
f64 max(f64 a, f64 b);

// returns a when cond is true, otherwise returns b
template<typename T>
T select(
    const boolean &cond,
    const T       &a,
    const T       &b);

Atomic

// in namespace cuj::cstd

i32 atomic_add(ptr<i32> dst, i32 val);
u32 atomic_add(ptr<u32> dst, u32 val);
f32 atomic_add(ptr<f32> dst, f32 val);

CUDA

// in namespace cuj::cstd
// available only when using PTX backend

i32 thread_idx_x();
i32 thread_idx_y();
i32 thread_idx_z();

i32 block_idx_x();
i32 block_idx_y();
i32 block_idx_z();

i32 block_dim_x();
i32 block_dim_y();
i32 block_dim_z();

void sample_texture2d_1f(u64 texture_object, f32 u, f32 v, ref<f32> r);
void sample_texture2d_3f(u64 texture_object, f32 u, f32 v, ref<f32> r, ref<f32> g, ref<f32> b);
void sample_texture2d_4f(u64 texture_object, f32 u, f32 v, ref<f32> r, ref<f32> g, ref<f32> b, ref<f32> a);

void sample_texture2d_1i(u64 texture_object, f32 u, f32 v, ref<i32> r);
void sample_texture2d_3i(u64 texture_object, f32 u, f32 v, ref<i32> r, ref<i32> g, ref<i32> b);
void sample_texture2d_4i(u64 texture_object, f32 u, f32 v, ref<i32> r, ref<i32> g, ref<i32> b, ref<i32> a);

System

// in namespace cuj::cstd

// e.g. print("%d\n%s", i32(42), string_literial("hello, cuj!"));
i32 print(const std::string &fmt_str, Args...args);

// in any cuj function
// assertion generation is controled by cuj::gen::Options::enable_assert
CUJ_ASSERT(cuj_bool_expr);

void unreachable();

Example

example/pow

Full source code of A Quick Example.

example/sdf

A simple CUDA path tracer based on SDF marching. The scene comes from taichi sdf renderer.

example/tex

Example of sampling cuda texture object.

std::vector<float> tex_data =
{
    1, 0, 0, 1,
    0, 1, 0, 1,
    0, 0, 1, 1,
    
    0, 1, 0, 1,
    0, 0, 1, 1,
    1, 0, 0, 1,
    
    0, 0, 1, 1,
    1, 0, 0, 1,
    0, 1, 0, 1,
};