-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGraham_Scan.py
167 lines (136 loc) · 5.06 KB
/
Graham_Scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import math
import unittest
__author__ = 'tushar-rishav'
class Point:
def __init__(self, x, y):
"""
Create a (X, Y) coordinate object vector.
"""
self.x = x
self.y = y
def __eq__(self, p):
return p.x == self.x and p.y == self.y
def __sub__(self, p):
"""
Return the difference of two vector.
"""
return Point(self.x - p.x, self.y - p.y)
def __mul__(self, p):
"""
Return cross product of two vector.
"""
return self.x * p.y - self.y * p.x
def __dict__(self):
return {'X': self.x, 'Y': self.y}
@classmethod
def dist(cls, P, Q=None):
"""
Distance between two given points P and Q. Q is origin by default.
"""
if Q is None:
Q = Point(0,0)
return math.sqrt((P.x - Q.x)**2 + (P.y - Q.y)**2)
@classmethod
def dot(cls, P, Q):
"""
Return dot product of two vector: Q.P
"""
return P.x * Q.x + P.y * Q.y
@classmethod
def direction(cls, P, Q, R):
"""
Find the direction of rotation of angle pqr.
CCW is positive and CW is negative.
"""
return (P-Q) * (R-Q)
@classmethod
def angle(cls, P, Q, R=None):
"""
Find the angle pqr if either q and r are distinct or R is None otherwise
angle between PQ and X axis is returned.
:param P, Q, R: The coordinate of the three points.
:return: Angle in radian rounded with a precision of 5.
"""
if R is None or Q == R:
# A point on line parallel to X axis and passing through Q.
R = Point(abs(P.x + Q.x) / 2.0, 0) if P.x + Q.x else Point(1, 0)
if P != Q and Q != R:
acute = math.acos(cls.dot(P-Q, R-Q) / (cls.dist(P-Q) * cls.dist(R-Q)))
return (round(2*math.pi - acute, 5) if (P-Q).y < 0
else round(acute, 5))
raise Exception("Invalid Points")
@classmethod
def polar_sort(cls, p0, *P):
"""
Sort a sequence <p1, p2, ..., pN> of n points according to their polar
angles w.r.t a given original point p0. Time Complexity: O(n log(n))
:param p0: The reference point.
:param P: A sorted sequence of tuple of Point object and its angle.
Sorting is done by angle.
"""
point_and_angle = map(lambda p: (p, cls.angle(p, p0)), P)
return sorted(point_and_angle, key = lambda p_tuple: p_tuple[1])
class ConvexHull:
def __init__(self, *P):
self._input = P
def graham_scan(self):
def find_p0():
min_p = self._input[0]
for p in self._input:
if p.y <= min_p.y:
if p.x <= min_p.x:
min_p = p
return min_p
def filter_farthest(rp, p0):
p_min = rp[0]
result = [rp[0]]
for p in rp:
if p[1] == p_min[1]:
if Point.dist(p[0], p0) > Point.dist(p_min[0], p0):
result[-1] = p
p_min = p
else:
p_min = p
result.append(p_min)
return result
p0 = find_p0()
remaining_p = filter(lambda p: p != p0, self._input)
remaining_p = Point.polar_sort(p0, *remaining_p)
remaining_p = filter_farthest(remaining_p, p0)
point_stack = []
point_stack.append(p0)
point_stack.append(remaining_p[0][0])
point_stack.append(remaining_p[1][0])
for i in xrange(2, len(remaining_p)):
while (Point.direction(remaining_p[i][0],
point_stack[-1], point_stack[-2]) < 0):
point_stack.pop()
point_stack.append(remaining_p[i][0])
return point_stack
class ConvexHullTest(unittest.TestCase):
def test_graham_scan(self):
ch = ConvexHull(Point(0, 0), Point(1,0), Point(1,1),
Point(5, 5), Point(0,2), Point(0,6), Point(-1,1))
self.assertEqual(ch.graham_scan(), [Point(0,0), Point(1,0), Point(5,5),
Point(0,6), Point(-1, 1)])
class PointTest(unittest.TestCase):
def test_polar_sort(self):
p1 = Point(0, 0); p2 = Point(5, 5)
p3 = Point(0, 5); p4 = Point(5, 0)
self.assertEqual(Point.polar_sort(p1, p2, p3, p4),
[(p4, 0), (p2, round(math.pi/4, 5)),
(p3, round(math.pi/2, 5))])
def test_angle(self):
p1 = Point(1, 1)
p2 = Point(0, 0)
p4 = Point(2, 0)
p3 = Point(-1, 1)
p5 = Point(-1, -1)
self.assertEqual(Point.angle(p1, p2, p4), round(math.pi/4 ,5))
self.assertEqual(Point.angle(p3, p2, p4), round(3*math.pi/4 ,5))
self.assertEqual(Point.angle(p3, p2), round(3*math.pi/4 ,5))
self.assertEqual(Point.angle(p5, p2, p4), round(5*math.pi/4 ,5))
if __name__ == "__main__":
unittest.main()