-
Notifications
You must be signed in to change notification settings - Fork 11
/
ferret.py
executable file
·296 lines (209 loc) · 8.53 KB
/
ferret.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from __future__ import print_function
import sys
import operator
import json
import scipy.stats as st
import argparse
from functools import reduce
# scaling of CPU frequency in kHz to MHz
#
def freqScale(kHz):
return int(kHz) / 1000.0 # scale kHz to MHz
def print_err(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def process_trace(traceFile, traceProperties):
def process_info(properties, infoRow, state):
infoMap = {'_SC_CLK_TCK': lambda x: ('tick', int(x[0])),
'CPUList': lambda x: ('cpus', [int(i) for i in x]),
'WatchList': lambda x: ('watch', x),
'Status': lambda x: ('stat_fields', x)}
infoType = infoRow[0]
infoData = infoRow[1:]
handler = infoMap[infoType]
k, v = handler(infoData)
if k == 'cpus':
cpuNrs = v[:]
while len(cpuNrs) > 1:
assert cpuNrs[0] not in cpuNrs[1:], ("Duplicate CPU number", cpuNrs[0])
cpuNrs = cpuNrs[1:]
v.sort()
properties[k] = v
def process_time(properties, timeRow, state):
now = float(timeRow[0]) * 1.0e-6
ret = dict(state)
state.clear()
state['time'] = now
if len(ret):
return ret
def process_status(properties, statusRow, state):
def asInt(x): return int(x)
convert = {'pid': asInt,
'comm': lambda x: x[1:-1],
'ppid': asInt,
'utime': asInt,
'stime': asInt,
'cutime': asInt,
'cstime': asInt,
'num_threads': asInt,
'starttime': asInt,
'processor': asInt}
assert len(convert.keys()) == len(properties['stat_fields'])
assert len(statusRow) == len(properties['stat_fields']), statusRow
data = [(f, convert[f](v)) for f, v in zip(properties['stat_fields'], statusRow)]
dataDict = dict(data)
pid = dataDict['pid']
state.setdefault('pid', dict())[pid] = dataDict
def process_cpu(properties, cpuRow, state):
def clamp(freq):
return freq if freq >= 0 else None
cpuNrs = cpuRow[0:-1:2]
freqs = cpuRow[1::2]
interleave = zip(cpuNrs, freqs)
data = [(int(cpu), clamp(freqScale(freq))) for cpu, freq in interleave]
state['cpu'] = dict(data)
recordMap = {'I': process_info, 'T': process_time, 'S': process_status,
'F': process_cpu, '#': lambda x, y, z: None, 'E': lambda x, y, z: None}
state = dict()
for row in traceFile:
rowSplit = row.split()
try:
recordType = rowSplit[0]
rowData = rowSplit[1:]
handler = recordMap[recordType]
sample = handler(traceProperties, rowData, state)
except BaseException:
print(row)
raise
if sample:
yield sample
yield state
class Process(object):
def __init__(self, schedTickHz, cpuNrs):
self.label = None
self.first = None
self.last = None
self.jiffies = None
self.jiffyPeriod = 1.0 / schedTickHz
self.mcyc = dict([(k, 0) for k in cpuNrs])
self.totJiffies = dict([(k, 0) for k in cpuNrs])
self.freqList = dict([(k, list()) for k in cpuNrs])
def add(self, label, ts, jiffies, freq, cpuNr):
assert cpuNr in self.mcyc
self.label = label
if not self.first:
self.first = ts
self.jiffies = jiffies
self.last = ts
diffJiffy = jiffies - self.jiffies
self.jiffies = jiffies
if diffJiffy and freq is None:
assert False, "time logged to unplugged CPU at ts=%f" % ts
self.totJiffies[cpuNr] += diffJiffy
if freq:
self.mcyc[cpuNr] += diffJiffy * self.jiffyPeriod * freq
self.freqList[cpuNr].append(freq)
def duration(self):
return self.last - self.first
def active_jiffies(self):
return reduce(operator.add, self.totJiffies.values())
def summary(self, pid):
active = self.jiffyPeriod * self.active_jiffies()
if not active:
return None
result = dict()
result['pid'] = pid
result['name'] = self.label
result['duration'] = self.duration()
result['active'] = dict([(k, self.jiffyPeriod * v) for k, v in self.totJiffies.items()])
result['MCyc'] = self.mcyc
result['MHz'] = dict()
for cpuNr, freqList in self.freqList.items():
if len(freqList) == 0:
result['MHz'][cpuNr] = 0
continue
result['MHz'][cpuNr] = st.gmean(freqList)
return result
def to_json(self, pid):
ret = self.summary(pid)
if ret:
return json.dumps(ret)
if __name__ == "__main__":
results = dict()
argParser = argparse.ArgumentParser(description='Post-process burrow/ferret CPU Load data.')
argParser.add_argument('--json', '-j', action='store_true')
argParser.add_argument('--start', '-s', type=float, default=-1.0)
argParser.add_argument('--end', '-e', type=float, default=-1.0)
argParser.add_argument('--output', '-o', type=argparse.FileType('w'), default=sys.stdout)
argParser.add_argument('input', nargs='+', type=str)
args = argParser.parse_args()
traceNames = args.input
cpuNrs = None
for traceName in traceNames:
assert traceName not in results, ("Duplicate trace file name", traceName)
initData = 0
traceStart = traceEnd = None
pidHistory = dict()
traceProperties = dict()
with open(traceName, 'r') as traceFile:
for sample in process_trace(traceFile, traceProperties):
if not initData:
tick = traceProperties['tick']
assert 'cpus' in traceProperties, traceName
if cpuNrs:
# Verify cpuNrs are identical for all traces we process.
#
for a, b in zip(cpuNrs, traceProperties['cpus']):
assert a == b, "CPU sets must be identical"
cpuNrs = traceProperties['cpus']
initData = 1
if args.start > 0 and sample['time'] < args.start:
continue
if args.end > 0 and sample['time'] >= args.end:
continue
if not traceStart:
traceStart = sample['time']
traceEnd = sample['time']
for pid, pidInfo in sample['pid'].items():
processor = pidInfo['processor']
assert processor in cpuNrs, "Invalid CPU"
freq = sample['cpu'][processor]
if pid not in pidHistory:
pidHistory[pid] = Process(tick, cpuNrs)
comm = pidInfo['comm']
ustime = pidInfo['utime'] + pidInfo['stime']
pidHistory[pid].add(comm, sample['time'], ustime, freq, processor)
skipped = 0
results[traceName] = list()
for pid, h in pidHistory.items():
if h.active_jiffies() > 0 and h.duration() > (0.01 * (traceEnd - traceStart)):
results[traceName].append(h.summary(pid))
else:
skipped += 1
print_err("%s: %d insignificant threads skipped" % (traceName, skipped))
print_err()
if args.json:
args.output.write(json.dumps(results))
args.output.write('\n')
else:
legend = ['file', 'name', 'pid', 'duration']
keys = ['file', 'name', 'pid', 'duration', 'MCyc', 'active', 'MHz']
# Since cpuNrs are identical for all traces we processed this produces correct
# output.
#
for d in ['MCyc', 'active', 'MHz']:
for c in cpuNrs:
legend.append('%s %d' % (d, c))
args.output.write(", ".join(legend))
args.output.write('\n')
for traceName, traceResult in results.items():
for process in traceResult:
out = list()
out.append(traceName)
for k in keys[1:]:
if isinstance(process[k], dict):
for i, j in sorted(process[k].items()):
out.append(str(j))
else:
out.append(str(process[k]))
args.output.write(", ".join(out))
args.output.write('\n')