forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswin.yml
122 lines (122 loc) · 4.56 KB
/
swin.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Collections:
- Metadata:
Training Data:
- ADE20K
Name: swin
Models:
- Config: configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
In Collection: swin
Metadata:
backbone: Swin-T
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 47.48
lr schd: 160000
memory (GB): 5.02
Name: upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
Results:
Dataset: ADE20K
Metrics:
mIoU: 44.41
mIoU(ms+flip): 45.79
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth
- Config: configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
In Collection: swin
Metadata:
backbone: Swin-S
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 67.93
lr schd: 160000
memory (GB): 6.17
Name: upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
Results:
Dataset: ADE20K
Metrics:
mIoU: 47.72
mIoU(ms+flip): 49.24
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth
- Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
In Collection: swin
Metadata:
backbone: Swin-B
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 79.05
lr schd: 160000
memory (GB): 7.61
Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
Results:
Dataset: ADE20K
Metrics:
mIoU: 47.99
mIoU(ms+flip): 49.57
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth
- Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py
In Collection: swin
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K
Results:
Dataset: ADE20K
Metrics:
mIoU: 50.31
mIoU(ms+flip): 51.9
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth
- Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py
In Collection: swin
Metadata:
backbone: Swin-B
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 82.64
lr schd: 160000
memory (GB): 8.52
Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K
Results:
Dataset: ADE20K
Metrics:
mIoU: 48.35
mIoU(ms+flip): 49.65
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth
- Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py
In Collection: swin
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K
Results:
Dataset: ADE20K
Metrics:
mIoU: 50.76
mIoU(ms+flip): 52.4
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth