-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretrain_finetune_exp.py
201 lines (174 loc) · 6.38 KB
/
run_pretrain_finetune_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import shutil
from dataset.EMG_Gesture_v2 import EMGGestureDataModule
from dataset.Ninapro_DB5 import NinaproDB5DataModule
from models.TSTCC.lit_model import LitTSTCC
from models.TFC.lit_model import LitTFC
from models.FCNNIMP import LitFCNNIMP
from configs.TSTCC_configs import Configs
import lightning.pytorch as pl
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.callbacks import ModelCheckpoint
import torch
from lightning.pytorch import seed_everything
from shutil import copyfile
from preprocess.TSTCC_preprocess import TSTCCDataset
from preprocess.TFC_preprocess import TFCDataset
from utils.sampler import split_dataset
from torch.utils.data import DataLoader
import argparse
import sys
from utils.terminal_logger import TerminalLogger
parser = argparse.ArgumentParser()
parser.add_argument("--per_class_samples", type=int, default=100)
parser.add_argument("--config_dir", type=str, default=None)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--dataset", type=str, default="NINA", help="EMG or NINA")
parser.add_argument("--pretrain_model_dir", type=str, default=None)
parser.add_argument("--model", type=str, default="TFC", help="TSTCC, TFC, FCNNIMP")
parser.add_argument("--log_save_dir", type=str, default="run1")
parser.add_argument("--augmentation", type=str, default="")
parser.add_argument("--experiment_name", type=str, default=None)
parser.add_argument("--pretrain_epoch", type=int, default=None)
parser.add_argument("--finetune_epoch", type=int, default=None)
args = parser.parse_args()
if args.experiment_name is None:
args.experiment_name = args.model
# Initialization
if args.config_dir is None:
config_dir = f"configs/{args.model}_configs.py"
else:
config_dir = args.config_dir
preprocess_dir = f"preprocess/{args.model}_preprocess.py"
# config_dir = r"test_run/version_23/TFC_configs.py"
import_path = ".".join(config_dir.split(".")[0].split("/"))
print(f"from {import_path} import Configs")
exec(f"from {import_path} import Configs")
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.set_float32_matmul_precision('medium')
configs = Configs(args.dataset)
for k, v in args.__dict__.items():
if v is not None:
configs.training_config.__setattr__(k, v)
configs.dataset_config.augmentation = args.augmentation
# configs.training_config.per_class_samples = args.per_class_samples
# configs.training_config.seed = args.seed
configs.training_config.version = f"{args.dataset}_" \
f"samples_{configs.training_config.per_class_samples}_" \
f"pe_{configs.training_config.pretrain_epoch}_" \
f"fe_{configs.training_config.finetune_epoch}_" \
f"seed_{configs.training_config.seed}_" \
f"aug_{configs.training_config.augmentation}"
log_dir = os.path.join(
configs.training_config.log_save_dir,
configs.training_config.experiment_name,
configs.training_config.version,
)
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
os.makedirs(log_dir)
sys.stdout = TerminalLogger(os.path.join(log_dir, "log.txt"), sys.stdout)
sys.stderr = TerminalLogger(os.path.join(log_dir, "err_log.txt"), sys.stderr)
seed_everything(configs.training_config.seed)
for fn in configs.training_config.bag_of_metrics.values():
fn.to(device)
if args.dataset == "EMG":
DataModule = EMGGestureDataModule
elif args.dataset == "NINA":
DataModule = NinaproDB5DataModule
else:
raise ValueError(f"Unknown dataset {args.dataset}")
if args.model == "TFC":
dataset_type = TFCDataset
else:
dataset_type = TSTCCDataset
dataset = DataModule(
dataset_type=dataset_type,
config=configs.dataset_config,
)
dataset.prepare_data()
pretrain_dataset = dataset.pretrain_dataset()
finetune_dataset = dataset.finetune_dataset()
finetune_train, val_and_test = split_dataset(
dataset=finetune_dataset,
num_samples=configs.training_config.per_class_samples,
shuffle=True,
)
finetune_val, finetune_test = split_dataset(
dataset=val_and_test,
num_samples=0.5,
shuffle=True,
)
lit_model = eval(f"Lit{args.model}(configs)")
logger = TensorBoardLogger(
save_dir=configs.training_config.log_save_dir,
name=configs.training_config.experiment_name,
version=configs.training_config.version,
)
if args.pretrain_model_dir:
lit_model.load_from_checkpoint(args.pretrain_model_dir)
elif "pretrain" in configs.training_config.mode:
ckpt_cb = ModelCheckpoint(
filename="m1",
save_weights_only=True,
)
lit_model.pretrain()
pretrain_loop = pl.Trainer(
deterministic=False,
max_epochs=configs.training_config.pretrain_epoch,
precision="16-mixed",
logger=logger,
log_every_n_steps=1,
callbacks=[ckpt_cb]
)
pretrain_loop.fit(
model=lit_model,
train_dataloaders=DataLoader(
dataset=pretrain_dataset,
batch_size=configs.dataset_config.batch_size,
shuffle=True,
),
)
else:
raise Exception("Check pretrain code!")
if "freeze" in configs.training_config.mode:
lit_model.freeze_encoder()
if "finetune" in configs.training_config.mode:
ckpt_cb = ModelCheckpoint(
filename="m2",
save_weights_only=True,
)
lit_model.finetune()
finetune_loop = pl.Trainer(
deterministic=False,
max_epochs=configs.training_config.finetune_epoch,
precision="16-mixed",
logger=logger,
log_every_n_steps=1,
callbacks=[ckpt_cb],
)
finetune_loop.fit(
model=lit_model,
train_dataloaders=DataLoader(
dataset=finetune_train,
batch_size=configs.dataset_config.batch_size,
shuffle=True,
),
)
finetune_loop.test(
model=lit_model,
dataloaders=DataLoader(
dataset=finetune_test,
batch_size=configs.dataset_config.batch_size,
shuffle=True,
),
)
config_save_dir = os.path.join(logger.log_dir, config_dir.split("/")[1])
print(f"Saving config file at {config_save_dir}")
print(copyfile(config_dir, config_save_dir))
preprocess_save_dir = os.path.join(logger.log_dir, preprocess_dir.split("/")[1])
print(f"Saving preprocess file at {preprocess_save_dir}")
print(copyfile(preprocess_dir, preprocess_save_dir))
sys.stderr.close()
sys.stdout.close()