-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_InspectionTime.py
101 lines (83 loc) · 3.17 KB
/
main_InspectionTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import shutil
from dataset.EMG_Gesture_v2 import EMGGestureDataModule
from configs.FCNN_configs import Configs
import torch
from lightning.pytorch import seed_everything
from preprocess.TSTCC_preprocess import TSTCCDataset
from utils.sampler import split_dataset
from tsai.all import *
from dataset.Ninapro_DB5 import NinaproDB5DataModule
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--per_class_samples", type=int, default=None)
parser.add_argument("--seed", type=int, default=None)
args = parser.parse_args()
# Initialization
config_dir = "configs/FCNN_configs.py"
preprocess_dir = "preprocess/TSTCC_preprocess.py"
# config_dir = r"test_run/version_23/TFC_configs.py"
import_path = ".".join(config_dir.split(".")[0].split("/"))
print(f"from {import_path} import Configs")
exec(f"from {import_path} import Configs")
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.set_float32_matmul_precision('medium')
configs = Configs()
if args.per_class_samples:
configs.training_config.per_class_samples = args.per_class_samples
if args.seed:
configs.training_config.seed = args.seed
configs.training_config.version = f"samples_{configs.training_config.per_class_samples}_" \
f"ep_{configs.training_config.epoch}_" \
f"seed_{configs.training_config.seed}"
log_dir = os.path.join(
configs.training_config.log_save_dir,
configs.training_config.experiment_name,
configs.training_config.version,
"log"
)
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
os.makedirs(log_dir)
seed_everything(configs.training_config.seed)
dataset = NinaproDB5DataModule(
dataset_type=TSTCCDataset,
config=configs.dataset_config,
)
dataset.prepare_data()
pretrain_dataset = dataset.pretrain_dataset()
finetune_dataset = dataset.finetune_dataset()
finetune_train, val_and_test = split_dataset(
dataset=finetune_dataset,
num_samples=configs.training_config.per_class_samples,
shuffle=True,
)
finetune_val, finetune_test = split_dataset(
dataset=val_and_test,
num_samples=0.5,
shuffle=True,
)
X_train, y_train = pretrain_dataset.split()
X_test, y_test = TSTCCDataset(dataset=finetune_test).split()
print(X_train.shape, y_train.shape, np.unique(y_train))
print(X_test.shape, y_test.shape, np.unique(y_test))
X, y, splits = combine_split_data([X_train, X_test], [y_train, y_test])
print(len(splits))
tfms = [None, [Categorize()]]
dsets = TSDatasets(X, y, tfms=tfms, splits=splits, inplace=True)
dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=128)
# dsid = 'NATOPS'
# X, y, splits = get_UCR_data(dsid, return_split=False)
# tfms = [None, [Categorize()]]
# dsets = TSDatasets(X, y, tfms=tfms, splits=splits, inplace=True)
# dls = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=[64, 128], batch_tfms=[TSStandardize()], num_workers=0)
model = InceptionTime(dls.vars, dls.c)
learn = Learner(dls, model, metrics=accuracy)
learn.lr_find()
learn.fit_one_cycle(100)
logits, labels = learn.get_preds(dl=dls.valid)
metrics = {}
for name, fn in configs.training_config.bag_of_metrics.items():
metrics[f"{name}"] = fn(logits, labels)
print(metrics)